
NASA Contractor Report-194924

(NASA-CR-194924) ADVANCED

INFORMATION PROCESSING SYSTEM: THE

ARMY FAULT-TOLERANT ARCHITECTURF

DETAILED DESIGN OVERVIEW Final

Report (Draper (Charles Stark)

Lab.) 13_ p

! -

G3/62

/

,/

N94-36962

Unclas

0013737

Advanced Information Processing System:
The Army Fault Tolerant Architecture Detailed
Design Overview

Richard E. Harper, Carol A. Babikyan, Bryan P. Butler, Robert J. Clasen,
Chris H. Harris, Jaynarayan H. Lala, Thomas K. Masotto, Gail A. Nagle,
Mark J. Prizant, Steven Treadweli

THE CHARLES STARK DRAPER LABORATORY, INC., CAMBRIDGE, MA 02139

Contract NAS1-18565

June 1994

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001





NASA Contractor Report-194924

Advanced Information Processing System:
The Army Fault Tolerant Architecture Detailed
Design Overview

Richard E. Harper, Carol A. Babikyan, Bryan P. Butler, Robert J. Clasen,
Chris H. Harris, Jaynarayan H. Lala, Thomas K. Masotto, Gail A. Nagle,
Mark J. Prizant, Steven Treadweli

THE CHARLES STARK DRAPER LABORATORY, INC., CAMBRIDGE, MA 02139

Contract NAS1-18565

June 1994

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001



This page intentionally left blank.

Page ii



Executive Summary

Digital computing systems needed for Army programs such as Command and Control (C2)

processing and the Computer-Aided Low Altitude Helicopter Flight Program may be char-

acterized by high computational throughput and input/output bandwidth, hard real-time re-

sponse, high reliability and availability, and maintainability, testability, and producibility

requirements. In addition, such a system should be affordable to produce, procure, main-

tain, and upgrade.

To 'address these needs the Army Fault Tolerant Architecture (AFTA) is being designed and

consmacted under a multi-year program comprising the Conceptual Study, Detailed Design

and Fabrication, and Demonstration and Validation phases. This report describes the results

of the Detailed Design of the AFTA, conducted during Government Fiscal Years (GFYs)

1992 and 1993.

AFTA is a militarized version of the Fault Tolerant Parallel Processor (FTPP) developed by

the Charles Stark Draper Laboratory, Inc. AFI'A is superior to existing fault tolerant com-

puter technology in several respects. AFrA is a hard-real-time Byzantine resilient parallel

processor. Due to its Byzantine resilience, it is capable of tolerating arbitrary failure behav-

ior, as opposed to tolerating only a limited class of faults. It is a scalable parallel processor,

which means that processors may be easily added as an application's performance require-

ments evolve, or as new applications emerge. It supports testability and redundancy man-

agement strategies which permit the dynamic reconfiguration of the parallel processing sites

into redundant groups to enhance sortie availability and mission reliability. This means that

the processing reliability levels can be optimized for given applications to achieve cost-ef-

fective fault tolerance. It is an open system, based on industry hardware and software stan-

dards and composed largely of Non-Developmental Items. This has the benefits of reduc-

ing the cost and risk of development, modification for different missions, and upgrading

existing installations. AFTA's fault tolerance is transparent to applications programmers,

allowing extensive reuse of existing code as well as simplification of the task of writing

new code. Extensive analytical models and predictive verification and validation techniques

are provided with AFFA to allow application designers to engineer a configuration for spe-

cific missions with a high degree of confidence that the fielded configuration will meet the

mission requirements.

AFTA's architectural theory of operation, the AFTA hardware architecture and compo-

nents, and the architecture of the AFTA Ada run time system (Ada RTS) were defined

during a Conceptual Study, as well as a test and maintenance strategy for use in fielded

Page iii



AFTA installations.A format wasdevelopedfor representingmissionrequirementsin a

mannersuitablefor first-orderAFTA sizingandanalysis.Preliminaryrequirementswere

obtainedfor two Army missions:arotary wingedaircraft missionand a groundvehicle
mission.An approachto beusedin reducingtheprobabilityof AFTA failure dueto com-

mon-modefaultswasdeveloped,aswell asanalyticalmodelsfor AFTA performance,reli-

ability, availability,life cyclecost,weight,power,andvolume.A planhasbeendeveloped

for verifyingandvalidatingkeyAFTA conceptsduringtheDem/Valphase,especiallythose

whichcannotbecost-effectivelyvalidatedby acceleratedlife cycle testing.Theanalytical

modelsandpartialArmy missionrequirementsdevelopedundertheConceptualStudyhave
beenusedto evaluateAFTA configurationsfor thetwo selectedArmy missions.To assist

in documentationandreprocurementof AFTA components,VHDL is usedto describeand

designAFTA's developmentalhardware.Finally, therequirements,architecture,andop-
erationaltheoryof theAFTA FaultTolerantDataBusweredefinedanddescribed.

TheAFTA programhasnow completedtheDetailedDesignPhase.During thisphase,the
hardwareandsoftwarearchitecturesrecommendedfrom theConceptualStudyphasewere

designedin preparationfor Brassboardfabrication in the Fabrication,Integration, and
Validation phase.Using internal Draperfunding, anAFTA Brassboardwas fabricated.

UnderArmy funding, the AFTA opensystemsdesignphilosophywasextendedfrom the

hardwareto its operatingsystemandprogramminglanguages.Specifically,a commercial

off-the-shelfPortableOperatingSystemInterface(POSIX)-compliantoperatingsystem
wasportedto theAFTA, andanexistingflight-criticalArmy applicationwasdemonstrated

on theAFTA Brassboard.Theexistingcode,which waswritten for anonredundantsys-
tem,wasportedto thefault tolerantAFTA in underoneweek.

Pageiv



Table of Contents

1. Introduction ................................................................................... 1

2. Program Overview and Status ............................................................. 3

2. I. AFTA Overview ....................................................................... 3

2.1.1. AFTA Hardware Architecture .................................................... 3

2.1.2. AFTA Ada Run Time System .................................................... 6

2.2. Long-Term AFTA Development Plan ............................................... 8

2.3. Conceptual Study ...................................................................... 10

2.4. AFTA Brassboard Demonstration and Validation ................................. 14

2.4.1. Detailed Design ..................................................................... 15

2.4.2. Fabrication, Integration, Validation .............................................. 16

2.5. Documents Used and Generated Under This Contract ............................ 17

2.6. Overview of Detailed Design Phase Deliverables .................................. 17

3. Updated Reliability Model ................................................................. 19

3.1. Review of Two AFFA Redundancy Management Options ....................... 19

3.2. Modifications Arising from Detailed Design Phase One .......................... 22

3.3. Effect of Recovery Rate on AFTA Mission Reliability ............................ 23

3.4. Effect of Recovery Rate on AFTA Mission Availability .......................... 26

4. Updated Performance Model .............................................................. 27

4.1. Overview of AFTA Ada RTS Scheduling .......................................... 27

4.1.1. Task Scheduling on a Single Virtual Group .................................... 28

4.1.2. Intertask Communication .......................................................... 30

4.1.3. overview of Minor Frame ........................................................ 30

4.1.4. Aperiodic Hard Real-Time Task Scheduling .................................... 32

4.1.5. Aperiodic Non-Real-Time Task Scheduling .................................... 34

4.1.6. Execution of RGs on Multiple VGs .............................................. 34

4.2. Performance Models .................................................................. 36

4.2.1. Operating System overhead Model ................................................ 36

4.2.1.1.

4.2.1.2.

4.2.1.3.

4.2.1.4.

4.2.1.5.

4.2.1.6.

Interrupt Handler (IH1) Overhead ............................................. 37

Rate Group Dispatcher- Part One (RGD1) overhead ..................... 37

IO Dispatcher (IOD) Overhead ................................................. 37

Interrupt Handler (IH2) Overhead ............................................. 38

Rate Group Dispatcher - part two (RGD2) Overhead ...................... 38

Fault Detection Identification and Recovery (FDIR) Overhead ............ 39

Page v



4.2.1.7. IO SourceCongruencyManager(IOSC)Overhead........................ 39
4.2.1.8. IO ProcessingTask(IOP)Overhead.......................................... 39

4.2.1.9. OSOverheadSummary......................................................... 40

4.2.2. ContentionModel .................................................................... 40

4.2.2.1. The Model ........................................................................ 41

4.2.2.1.1. Processingof MessagePackets........................................... 41

4.2.2.1.2. Contentionfor NE ServicesAmongTwo or More PEs................ 44

4.2.2.1.3. Simplifying Assumptions.................................................. 45
4.2.2.2. ContentionSimulation.......................................................... 48

4.2.2.3. Resultsof theSimulation....................................................... 49

4.3. PerformanceMeasurementMethodology........................................... 52
4.3.1. SoftwareProbes...................................................................... 53

4.3.1.1. Descriptionof DataRecordedby SoftwareProbes.......................... 54

4.3.1.2. Example of Software Probe Use...............................................54
4.3.2. Transfer of Data from the AFTA to the Host VAX ...............................56

4.3.3. DataAnalysis ......................................................................... 56
4.3.3.1.Determinationof Time Interval................................................ 56

4.3.3.2. Statistical Analysis of Time Data...............................................57
4.4. PerformanceMeasurementResults.................................................. 58

4.4.1. SystemConfiguration............................................................. 58

4.4.2. InterruptHandlerOverhead......................................................... 58

4.4.2.1.ScoopMessage................................................................... 59

4.4.3. Rate Group Dispatcher (Part One) Overhead......................................59
4.4.3.1. RecordCongruentTime Value, Checkfor RGD2 Overrun................60
4.4.3.2. Checkfor RG TaskOverruns.................................................. 61

4.4.3.3. SetUp NextRG Interval, ScheduleIO Dispatcher......................... 61

4.4.4. IO Dispatcher (IOD) Overhead...................................................... 61

4.4.5. RateGroupDispatcher(PartTwo) Overhead.................................... 62
4.4.5.1. Update CongruentTimeValue,Checkfor RGD1andIOD Overrun..... 63

4.4.5.2. Send Queue....................................................................... 64

4.4.5.3. UpdateQueue.................................................................... 64

4.4.5.4. ScheduleRateGroupTasks.................................................... 66

4.4.5.5. IncrementFrameNumber,SetUp IO Intervalfor NextFrame............ 66

4.4.5.6. RGD2 Summary................................................................. 67

4.4.6. FaultDetection,Identification,andRecovery(FDIR) Overhead............... 67

4.4.7. IO SourceCongruencyManager(IOSC)Overhead.............................. 67

Pagevi



.

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

4.4.8. IO Processing Task (IOP) Overhead ............................................... 68

4.4.9. Other Overheads ...................................................................... 68

4.4.9.1. Queue Message .................................................................. 68

4.4.9.2. Retrieve Message ................................................................ 69

4.4.9.3. Context Switch Overhead ....................................................... 70

4.4.10. Performance Data Summary ....................................................... 70

4.5. Detailed OS Overhead Model ......................................................... 72

4.5.1. OS Overhead Model with Empirical Data .......................................... 72

4.5.1.1. Interrupt Handler (IH1) Overhead ............................................. 73

4.5.1.2. Rate Group Dispatcher - Part One (RGD1) Overhead ..................... 73

4.5.1.3. IO Dispatcher (IOD) Overhead ................................................. 74

4.5.1.4. Interrupt Handler (1/-12) Overhead ............................................. 74

4.5.1.5. Rate Group Dispatcher - Part Two (RGD2) Overhead .................... 75

4.5.1.6. Fault Detection Identification and Recovery (FDIR) Overhead ............ 76

4.5.1.7. IO Source Congruency Manager (IOSC) Overhead ........................ 77

4.5.1.8. IO Processing Task (IOP) Overhead .......................................... 77

4.5.1.9. Total OS Overhead .............................................................. 77

4.5.2. Example of Overhead Model Use .................................................. 78

4.5.2.1. Description of Example System Configuration .............................. 78

4.5.2.2. Predicted Overheads ............................................................. 79

4.5.2.3. Comparison of Predicted and Actual Overheads ............................. 81

4.5.2.4. Other Uses of OS Overhead Model ............................................ 83

POSIX Study ................................................................................ 85

Objective and Approach ............................................................... 85

Overview of Progress ................................................................. 85

Generic AFTA Virtual Architecture .................................................. 86

POSIX Study Virtual Architecture ................................................... 87

POSIX Study Physical Architecture ................................................. 87

POSIX Study Scheduling ............................................................ 91

5.6.1. Periodic Hard Real-Time Tasks .................................................. 91

5.6.2. Event-Triggered Hard Real-Time Tasks ......................................... 92

5.6.3. Time- or Event-Triggered Soft Real-Time Tasks ............................... 93

5.7. Network Element Device Driver ..................................................... 94

5.7.1. Device Driver Operations .......................................................... 94

5.7.2. Device Driver Installation ......................................................... 95

5.8. Dynapath Demonstration Architecture ............................................... 96

Page vii



.

7.

5.8.1. Dynapath Application Programmer Interface to NE ............................ 97

5.8.2. Dynapath Code for Interfacing with NE Device Driver ........................ 98

5.8.3. Use of NE Interface by Dynapath's Ethemet Communications

Procedures ..................................................................................... 102

References ................................................................................... 108

Glossary of Terms and Acronyms ........................................................ 117

P_ev_



List of Figures

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure

Figure

Figure

AFTA Physical Architecture .......................................................... 5

AFTA Virtual Configuration .......................................................... 6

Near-Term Schedule for the AFTA Program ....................................... 12

Graceful Degradation of Quadruplex VG 1 .......................................... 20

Processor Replacement Redundancy Management for Quadruplex VG1 ....... 21

Rate Group Frame - Programming Model .......................................... 29

Architecture of RG Frames on a Single VG ........................................ 29

Overview of Minor Frame ............................................................ 31

Scheduling of Event-Triggered Hard Real-Time Aperiodic Tasks ............... 33

10. Phasing of RG Frames on Multiple VGs .......................................... 35

I 1. Overview of Minor Frame .......................................................... 36

12. Message Packet Processing ......................................................... 43

Figure 13. Contention Timeline ................................................................. 45

Figure 14. Phasing Among PEs ................................................................. 47

Figure 15. Contention Model Timeline ......................................................... 48

Figure 16. Effect of Varying Number of Packets and Phasing on Time to Send

Message Packets ................................................................................... 49

Figure 17. Effect of Varying Number of PEs and Phasing on Time to Send

Message Packets ................................................................................... 50

Figure 18. Effect of Varying Process Packet Time and Transfer Packet Time on

Time to Send Message Packets ................................................................... 51

Figure 19. Effect of Varying Process SERP Time and Transfer Packet Time on

Time to Send Message Packets ................................................................... 51

Figure 20. Effect of Reducing Each Default Parameter by 50% on Time to Send

Message Packets ................................................................................... 52

Figure 21. Performance Measurement Overview .............................................. 53

Figure 22. Placement of Software Probes ..................................................... 55

Figure 23. Graphical Representation of Send Queue and Update Queue Execution

Time as a Function of Number of Packets ...................................................... 65

Figure 24. Graphical Representation of Queue Message and Retrieve Message

Execution Time as a Function of Number of Packets ......................................... 70

Figure 25. Comparison of Time to Schedule Tasks (Measured) with Least Square

Line Approximation ............................................................................... 83

Page ix



Figure26.GenericLayeredView of AFTA.................................................... 86

Figure27.LayeredView of AFTA for POSIXStudy........................................ 87

Figure28.SimplexSelf-HostedDevelopmentEnvironment................................. 88

Figure 29. SimplexTargetEnvironmentand DevelopmentEnvironment...................88

Figure 30. RedundantTargetEnvironmentandDevelopmentEnvironment................90
Figure31. TaskTaxonomy...................................................................... 91

Figure 32. Schedulingof Hard Real-Time Periodic Tasks...................................92

Figure33. Schedulingof Event-TriggeredHardReal-TimeTasks......................... 93

Figure 34. Scheduling of Aperiodic Tasks.....................................................94

Figure35.AFTA NE DeviceDriverInstallationScript....................................... 95
Figure

Figure

Figure

Figure

36.Architectureof DynapathDemonstration.......................................... 97

37.Listing of exch0 Procedure......................................................... 98

38.Dynapath'sdutils.cNE InterfaceCode............................................ 102

39. Useof NE InterfaceCalls by DynapathEthemetI/O Procedures...............107

Pagex



List of Tables

Table 1. AFTA Component Failure Rates for Helicopter Mission Scenario .............. 23

Table 2. VG Failure Probability Due to Attrition and Near-Coincident Faults -

100Hz Recovery Rate as Assumed in Conceptual Study ................................... 26

Table 3. VG Failure Probability Due to Attrition and Near-Coincident Faults -

100Hz, 10Hz, and 1Hz Recovery Rate ....................................................... 26

Table 4. Maximum Event Response Latency vs. Rate Group .............................. 32

Table 5. Representative Use of Debug Log Data Fields .................................... 55

Table 6. Overheads Associated with debug_log Procedure Calls .......................... 57

Table 7. Scoop Message Execution Time as a Function of Number of Packets ......... 59

Table 8. Overall Rate Group Dispatcher (Part One) Execution Time as a

Function of Minor Frame Number ............................................................ 60

Table 9. RGD1 Update Congruent Time Value and Check for RGD2 Overrun

Execution Time .................................................................................. 60

Table 10. RGD 1 Check for Rate Group Task Overruns Execution Time as a

Function of Number of Rate Group Tasks ................................................... 61

Table 11. RGD 1 Set Up RG Interval and Schedule IO Dispatcher Execution

Tune 61

Table 12. Overall Rate Group Dispatcher (Part Two) Execution Time as a

Function of Minor Frame Number ............................................................ 63

Table 13. RGD2 Update Congruent Time Values and Check for RGD 1 and IOD

Overrun ........................................................................................... 64

Table 14. RGD2 Send Queue (Per Task) Execution Time as a Function of

Number of Packets .............................................................................. 64

Table 15. RGD2 Update Queue (Per Task) Execution Time as a Function of

Number of Packets .............................................................................. 65

Table 16. RGD2 Schedule Rate Group Tasks Execution Time as a Function of

Number of Tasks Per Rate Group ............................................................. 66

Table 17.

Table 18.

Table 19.

Table 20.

Table 21.

Table 22.

RGD2 Increment Frame Number and Set IO Interval Execution Time ..... 66

Local FDIR Execution Time ....................................................... 67

Minimal IO Source Congruency Manager Execution Time .................... 67

Minimal IO Processing Task Execution Time ................................... 68

Queue Message Execution Time as a Function of Message Size .............. 69

Retrieve Message Execution Time as a Function of Message Size ............ 69

Page xi



Table 23. Context Switch Execution Time...................................................70

Table24. OSOverheadDueto Communication,SchedulingandFaultDetection
(AverageValuesfor aMinor Frame).......................................................... 72

Table 25. SystemParametersfor Each Minor Frame.......................................80

Table26. Comparisonof PredictedandMeasuredOverheads............................ 82

Pagexii



1. Introduction

The long-term objective of the AFTA program is to develop and deploy the Army Fault

Tolerant Architecture (AFTA) on a variety of Army programs such as the Rotorcraft Pilot's

Associate, the Comanche, and Command and Control (C2) applications. Applications such

as these may be characterized by a combination of computational intensiveness, real-time

response requirements, high reliability and availability requirements, maintainability,

testability, and producibility requirements, and sensitivity to life-cycle costs.

The AFTA architecture is based on the Charles Stark Draper Laboratory, Inc. Fault Toler-

ant Parallel Processor (FTPP). AFTA is a real-time computer possessing high reliability,

maintainability, availability, testability, and computational capability. It achieves the first

four properties primarily through adherence to a theoretically rigorous theory of fault toler-

ance known as Byzantine Resilience, through which arbitrary failure modes can be toler-

ated. It is designed for verifiability and quantifiability of key system attributes with a high

degree of confidence, in part due to its theoretically sound basis and in part due to plausible

parameterizations of fault tolerance and Operating System overheads. Through the use of

parallel processing, AFTA provides the throughput for future integrated avionics and con-

trol functions. To be useful for a variety of Army applications, the number and redundancy

level of processing sites in AFTA may be varied from one application to another. Two op-

erating systems have been hosted on AFTA. The first is a dedicated Ada run time system,

and the second is an industry-standard Portable Operating System Interface (POSIX)-

compliant operating system. AFTA is intended to be easy to produce and upgrade through

extensive use of Non Developmental Items and compliance with well-accepted electrical,

mechanical, and functional standards.

Over the past few years NASA and the Strategic Defense Initiative Office (SDIO) have

sponsored the Advanced Information Processing System (AIPS) program at Draper Labo-

ratory. The overall goal of the AIPS program is to produce the knowledgebase necessary to

achieve validated distributed fault tolerant computer system architectures for advanced real-

time aerospace applications [Har91 b]. As a part of this effort, an AIPS engineering model

consisting of hardware building blocks such as Fault Tolerant Processors and Inter-

Computer (IC) and Input/Output (I/O) networks and software building blocks such as Lo-

cal System Services, IC and I/O Communications Services was constructed. AFTA can be

considered to be a high-throughput AIPS building block which can be interfaced to the

AIPS IC network. Section 3.7 of the AFTA Conceptual Study describes the AIPS engi-

neering model in more detail and illustrates how it can be interfaced with AFTA.

Page 1



The AFTA Detailed Design Phase One Documentation consists of three volumes. Volume

I, "Overview Volume," contains the program overview and status, updated performance

and reliability models, and a description of the deliverables of this phase of the AFTA de-

velopment. Volume II, "AFTA Software Documentation," includes the Software

Development Plan (SDP), the Ada RTS Software Requirements Specification (SRS), and a

directory of the files delivered on digitally readable media. Source code listings are pro-

vided for the AFTA Ada Run Time System, the Network Element Simulator, the

Performance Measurement and Data Processing software, the Static Code Execution Time

Analysis software, and the Network Element Self Test software. Volume III, "AFTA

Network Element Hardware Documentation," contains an updated version of Section 4 of

the Conceptual Study describing the operational overview of the Network Element and a di-

rectory of all files delivered on digitally readable media. Board layouts, schematics,

Programmable Array Logic (PAL) equations, VHSIC Hardware Description Language

(VHDL) source and testbench code, VHDL testbench inputs and outputs, timing diagrams,

microcode, and Field Programmable Gate Array (FPGA) designs are provided for the

Network Element.

Because some readers may wish only to read individual volumes, Volumes 1-111 may con-

tain some redundant information such as references and a glossary of terms and acronyms.

In addition, in order for this documentation to be relatively self-contained, review material

from the Conceptual Study is incorporated at judicious points.

Page 2



2. Program Overview and Status

2.1. AFTA Overview

2.1.1. AFTA H_Klw_re Architecture

The AFTA is based on the Fauk Tolerant Parallel Processor (FTPP) architecture developed

by Draper Laboratory. The FTPP architecture was conceived to satisfy the dual require-

ments for a computer system of ultra-high reliability and high throughput. To satisfy the

first requirement, the FTPP is designed to be resilient to Byzantine faults. To satisfy the

throughput requirement, the architecture includes multiple processing elements to provide

parallel processing capability. For a detailed description of the FTPP the reader is referred

to [Ab188], [Bab90a], [Har87], [Har88a], [Har88b], and [Har91a].

The AFTA is composed of Non-Developmental Item (NDI) Processing Elements (PEs), In-

put/Output Controllers (IOCs), Power Conditioners (PCs), backplane/chassis assemblies,

and specially designed hardware components referred to as Network Elements (NEs).

A diagram of the physical AFTA configuration is shown in Figure 1. The AFTA cluster

consists of 4 or 5 Fault Containment Regions (FCRs). A fault occurring in one FCR can

not cause another FCR to malfunction; this is achieved by providing each FCR with inde-

pendent sources of power, clocking, and dielectric and physical isolation. FCRs reside in

Line Replaceable Units (LRUs). FCRs may either be distributed among several LRUs for

damage tolerance or integrated into a single LRU if damage tolerance is not an issue. Each

FCR contains an NE, 0 to 8 PEs, a PC, and 0 or more IOCs. A minimal AFTA configura-

tion consists of at least four NEs and three PEs; a maximal system would consist of five

NEs and forty PEs. Selection of the number of NEs and PEs for a given application is

made according to performance, reliability, availability, and other engineering require-

ments.

Devices in an FCR are interconnected using one or more standardized backplane buses.

Depending on the procuring organization, this could be the VMEbus, SAVA SBBUS,

Plbus, Futurebus+, or some other bus. The NE's bus-dependent and bus-independent cir-

cuitry are intentionally partitioned such that changes in the FCR backplane bus only affect

the former, allowing the AFTA concept to transition from one standards suite to another

with minimal hardware redesign.

The NEs provide communication between PEs, keep the FCRs synchronized, maintain data

consensus among FCRs, and provide dielectric isolation between the FCRs via fiber optic

Page 3



links.TheNE implementstheprotocolrequirementsfor Byzantineresilience[LSP82].The

NE is theonly developmentalhardwareitemin AFTA. To facilitateits design,simulation,

fabrication,andreprocurement,theNE isdescribedusingVHDL.

EachPEconsistsof aprocessor,privateRAM andROM,andmiscellaneoussupportde-

vices,suchasperiodictimer interrupts.ThePEsmayoptionallyhaveprivateI/O devices,

suchasEthemet,RS-232,etc.Theprocessormaybeeitherageneral-purposeprocessoror

aspecial-purposeprocessorfor signalor imageprocessing.Multiple processortypesmay

coexistsimultaneouslyandinteroperatein anAFTA implementation.

The IOCsconnectAFTA to theoutsideworld, andcanbeanymodulethatis compatible
with theFCRstandardbackplanebus.Interfacesto communicationnetworkssuchasthe

JIAWG HSDBandtheAFTA FaultTolerantDataBus(FTDB) arealsoclassifiedasIOCs.

Alternatively, for maximumI/O bandwidth,multiple dedicatedI/O busesmaybe used.

Both optionsareshownin Figure1.

To achievetransparentprocessorreliability, nonredundantPEsaregroupedinto Virtual

Groups(VGs),depictedin Figures1 and 2. Byzantine resilient triplexes and quadruplex

VGs consist of three and four PEs, respectively. Virtual groups consisting of only one pro-

cessing site are called simplexes. The ensemble of Network Elements provides a virtual bus

abstraction connecting the VGs. This abstraction conceals the multiple NEs and their inter-

connect, replacing it with a simple bus-oriented abstraction.

As mentioned earlier, two operating systems have currently been hosted on AFTA: a dedi-

cated Ada run time system and an industry-standard POSIX-compliant operating system.

Many of the features outlined in the following section apply equally to both the Ada run

time system and the POSIX-compliant operating system. Details on the status of the

POSIX operating system are provided in Section 5.

P_e4



Fault I/O BI
Containment

Region

- Independent Power
- Independent Clocking
- Dielectric Isolation
- Physical Isolation

(optional)

Standard Bus

Network
Elements

- Voting
- Synchronization

Passing
- Reconfiguration

AFTA

High Speed
Fiber Optic

Network

Input/Output Controllers
- NDI Components
- Redundancy from 1 to 4

Processing Elements
- NDI Components
- Application Software
- Ada Run Time System
-POSIX Run Time System
- Virtual Groups:

S: Simplex
T: Triplex
Q: Quadruplex

Fault Tolerance Achieved by:
- Multiple processing elements, each in
- Separate fault containment regions
- Results voted via Network Elements over
- Fiber optic links

Figure 1. AFTA Physical Architecture

Page 5



Network Element Virtual Bus

Quadruplex Simplex Triplex Quradruplex Tdplex Triplex Simplex Simplex Simplex
with !/0 with I/0 with I/0

Figure 2. AFTA Virtual Configuration

2.1.2. AFTA Ada Run Time System

The foundation of the Ada run time system for the AFTA consists of a vendor-supplied

Ada Run-Time System and Draper-supplied extensions based on recommendations made

by the Ada Run-Time Environment Working Group. Additional features are required to

manage the plurality of AFTA resources in a manner appropriate to the mission require-

ments.

AFTA processing is distributed by task, and intertask communication is provided by mes-

sage passing. Hig h reliability is provided by redundantly executing the tasks on replicated

processors. The AFTA hardware and software have been designed to hide the hardware re-

dundancy, hardware faults, and the distributed processing details from the applications

programmer.

A system configuration specifies the mapping from tasks to VGs and from VGs to proces-

sors. This mapping is maintained by the operating system and is used to isolate the applica-

tions programmer from the underlying redundancy and distributed processing mapping.

System initialization uses the above mapping to test the hardware components of the system

and evaluate whether there are sufficient resources to perform the mission.

AFTA is perhaps best viewed as a layered system. The top layer consists of the applica-

tions programs themselves. In an ideal world, these are constructed by the systems engi-

neers without regard for the parallel and redundant nature of AFTA. In reality, the systems

engineers must, to some extent, assist in the selection of appropriate task-to-VG mappings,

processing site redundancy levels, fault recovery strategies, and other parameters from

among those made available by the AFTA architecture.

The next lower layer consists of the AFTA System Services. Several services may be in-

voked by the applications programmer; these include task scheduling, intertask communi-

Page 6



cation,andinput/output.This layer is intendedto maskthecomplexityof AFTA's lower

layersfrom theprogrammer.

The AFTA Ada RTS supportstwo different stylesof scheduling.Thef'trst,known asrate

groupscheduling,is suitablefor tasksuitesin which eachtaskhasawell-definediteration

rateandcanbevalidatedto haveanexecutiontimewhich is guaranteedto notexceedits it-

erationframe(theinverseof its iterationrate).Flight controlis anexampleof suchatask.

ThebaselineAFTA rategroupframesrun at 100,50, 25, and 12.5Hz; thenumberand

frequenciesof framesareeasilychanged.Thesecondstyleof scheduling,hereinknownas

"non-rategroupscheduling,"is usedwhentheiterationrateof aparticulartaskis unknown

or undefined.A missionplanningalgorithmis anexampleof suchatask.Validationof the

temporalbehaviorof suchtasksmaybedifficult. Non-rategrouptasksarenot allowedto
perturbthecriticaltiming behaviorof rate-grouptasks.This is achievedby schedulingthem

with a lowerpriority thanrate-grouptasks.

TheAFTA communicationservicessupportintertaskcommunicationin theform of asyn-

chronousmessagepassing.A sendingtaskis not requiredto becognizantof theVG host-

ing the destinationtask-it identifies the destinationtask via a logical task identifier.

Messagedelivery, correctness,andorderingareguaranteedin the presenceof Byzantine

faultsaccordingto theByzantineResilientVirtual Circuit Abslraction[Har87].

TheI/O servicesprovidecommunicationsbetweentheapplicationprogramandexternalde-

vices (sensorsandactuators).They executeon anyVG which is responsiblefor I/O and

providesourcecongruencyonall inputdataandvoting of all outputdata.TheI/O services

providethe userwith theability to groupI/O transactionsinto chainsandI/O requests.It
alsoallows the userto schedulebothpreemptiveandnon-preemptiveI/O. I/O activity is

slavedto timer-basedinterruptson theVG to reducejitter. It is expectedthat manyVGs

will beaccessingI/O devicesconcurrentlyto maximizethesystem'soverallI/O bandwidth.

Otherimportantfunctionsof theAFTA SystemServicesarenot directly accessibleby the

applicationsprogrammerandareperformedin amannerwhichis largelytransparent.These
includethe traditional functionsof preemptionof lower priority tasksby higherpriority

ones,routing intertaskmessagesto remoteVGs, disassemblingand reassemblinglong

messages,Built-In Testingandfault logging,andfielding softwareexceptions.Otherless

traditionalfunctionsareFaultDetection,Identification,andRecovery(FDIR), reconfigura-

tionof theparallelresourcesinto redundantcomputingsites,andinterfacingto theNE.

FDIR is composedof localFDIR whichexecutesoneachVG andsystemFDIR which ex-

ecuteson a speciallydesignatedVG. Local FDIR hastheresponsibilityfor detectingand

Page7



identifying hardwarefaults in thePEsof its VG anddisablingtheir outputsusing the inter-

lock hardware. In addition, local FDIR reports all link and NE faults to system FDIR and

responds to its reconfiguration commands. It is also responsible for transient fault discrim-

ination and for running self tests to detect latent faults. The system FDIR is responsible for

the collection of status from the local FDIR and detection, identification and masking of NE

faults, and link faults. It resolves conflicting local fault identification decisions, disam-

biguates unresolved faults, correlates transient faults, and handles VG failures.

When a faulty component has been identified, FDIR initiates an appropriate recovery strat-

egy which attempts to compensate for the loss of a component. The variety of recovery

strategies is vast, not only because the policy must be commensurate with the type of com-

ponent failed but also because of the system requirements and the mission phase. The array

of recovery policies includes a strategy to replace a faulty processor with a spare processor,

an option to migrate a task when its processor fails, and a policy to quickly mask the incor-

rect behavior of a failed component.

The next lower layer of AFTA consists of the interprocessor communication network

hardware, i.e., the NEs. This hardware implements the interprocessor message passing

functions of AFTA. In addition, it implements throughput-critical fault tolerance-specific

functions such as voting of messages emanating from redundant processing sites, provid-

ing error indications, assisting in synchronizing redundant processing sites, and assisting

in arranging the non-redundant paraUel processing resources of AFTA into redundant pro-

cessing sites based on the needs of the application, mission mode, and the fault state of

AFTA.

At the lowest layer of interest reside the inter-NE communication links, which provide

high-bandwidth, dielectrically isolating, optical communication paths between the AFTA

FCRs. The data transmissions over the links also keep the NEs synchronized to within

+80ns using digital phase-locked loop techniques.

2.2. Long-Term AFTA Development Plan

To achieve the AFTA program's long-term objective requires a multi-phased product de-

velopment, production, and support cycle. A useful model for AFTA's development and

deployment cycle is based on that found in MIL-STD-785B, "Reliability Program for Sys-

tems and Equipment Development and Production" [MIL-STD-785B].

First, a Conceptual Study phase is performed to ascertain the requirements of anticipated

applications and develop concepts suitable for those applications. Quantitative formulations

are developed for critical parameters such as performance, reliability, etc., appropriate to

Page 8



the level of detailavailablefrom therequirementsandtheproposedarchitecturalconcepts.

Deliverablesof thisphaseincludeadocumentdescribingtheapplicationrequirements,the

structureandoperationaltheoryof theproposedconceptualsolution,analyticalmodelsand
resultsusedin evaluatingthearchitecture,plansfor evaluatingandverifying theanalytical

predictions,andplansfor further developmentphases.This documentationis provided
bothin hardcopyanddigital format.

Next,aDemonstrationandValidation(Dem/Val)phaseis executed,in whichthecandidate

solutionis refinedthroughextensivestudyandanalysis,hardwaredevelopment,test,and
evaluation.In the AFTA program,a prototype of the architectureis designedand con-

structedfrom commerciallyavailablehardware,andis denotedtheAFTA Brassboard. Tiffs

prototype serves as a testbed for evaluation and improvement of the architectural concept,

increases confidence in the viability of the architecture, provides information regarding the

interaction of system components, and corroborates preliminary analytical and functional

models. In the Dem/Val phase, the verifiable attributes of the Brassboard are investigated

according to the verification plan described in Section 11 of the Conceptual Study report,

and a preliminary Failure Modes and Effects and Criticality Analysis (FMECA) is per-

formed to identify reliability bottlenecks needing attention. The analyses produced under

the Conceptual Study phase are refined based on detailed design and empirical data ob-

tained from the Dem/Val phase, and a Full Scale Development plan is constructed. If de-

ployable Non Developmental Items are available for use in the Brassboard, Reliability

Development/Growth Testing for these items may be initiated. Deliverables of this phase

include one or more copies of the Brassboard, detailed design information such as mechan-

ical drawings, parts lists, schematics, timing analyses, data and control flow diagrams,

Interface Control Documents, VHDL, ADA, and Assembler source code, hardware and

software documentation, test and evaluation results, refined analytical models, the

FMECA, and user/programmer guides. The documentation is provided both in hardcopy

and digital format.

Upon satisfactory demonstration, validation, and refinement of the architectural concept,

the Full Scale Development phase (FSD) is entered, during which the system and the prin-

cipal items necessary for its support are designed, fabricated, tested, and evaluated.

The FSD phase begins with the construction of numerous plans. These include Engineering

Development Model (EDM) fabrication, incoming/outgoing Quality Assurance, Envi-

ronmental Stress Screening (ESS), Reliability Development/Growth Testing (RDGT),

Failure Reporting And Corrective Action, Validation and Verification, Full-Scale Produc-

tion (FSP), logistics, Pre-Planned Product Improvement (p3I), and maintenance plans. A

Page 9



detailedFailureModesandEffectsandCriticality Analysis(FMECA)isperformedto iden-

tify AFTA reliability bottlenecks.ProductionacceptancetestssuchastheProductionReli-

ability AcceptanceTestare defined. The Preliminary Design Review, Critical Design Re-

view, and Production Readiness Review are scheduled. Deliverables from the FSD plan-

ning phase include the plans and schedule outlined above in hardcopy and digital format.

Upon satisfactory completion of the FSD plans, fabrication of the EDM begins. The EDM

is as far as possible identical to systems planned for Full Scale Production (FSP); for

AFTA, it is constructed of military-qualified components in packages and form factors suit-

able for installation in the vehicles of interest. The EDM is used to verify the producibility

of AFTA, undergo ESS and RDGT, and refine quantitative predictive models of AFTA at-

tributes. Deliverables from the EDM phase include one or more EDM copies, detailed EDM

engineering documentation, the FMECA, results from the ESS and RDGT, and Validation

and Verification results.

After EDM testing and acquisition of detailed application requirements, the architecture is

ready for Full Scale Production (FSP), in which units intended for use in one or more de-

ployments are produced in quantity. While in use in the field, all systems (even AFTA) suf-

fer faults and require continual maintenance, spares, and associated logistics support.

During production and deployment a Failure Reporting And Corrective Action plan is ex-

ercised to identify failure modes, trace them back to weak components, and, if possible,

modify the design, parts, and/or fabrication process to eliminate them. Over the AFTA's

fielded life, Pre-Planned Product Improvements (p3I) may be implemented to increase

system capabilities, increase reliability/availability, and reduce support costs. It is generally

expected that the field support costs will far exceed all other development and procurement

costs. Finally, all systems (even AFTA) become obsolete with time, enter old age and are

replaced with newer technology.

The Conceptual Study and Dem/Val phases will now be discussed in chronological order.

2.3. Conceptual Study

The near-term objective of the AFTA program is to demonstrate and evaluate the Army

Fault Tolerant Architecture (AFTA) Brassboard within the context of the Computer-Aided

Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM)

Program. The subject program consists of the first two phases in the product development

cycle discussed above, namely the Conceptual Study and the Brassboard Demonstra-

tion/Validation phases. These two phases are further partitioned into three separate sub-

tasks:

Page 10



.

2.

3.

Conceptual Study

Detailed Design

AFTA Brassboard Fabrication and Evaluation

Due to funding limitations the AFTA program Detailed Design was stretched over two

years (GFY92 and GFY93), while the Brassboard Fabrication was completed on schedule

under separate funding.

The approximate schedule for these phases is given in Figure 3:

Page 11



m

ii
(,9.

m

O3
>..-
Id.
t.9-

O')
>..--

N-

>..-
it
(.9_

m

id_
(,.9--

O--

O'1
>..--
Id.
(,9--

m
w
M
m
M

M
m
M
M

¢/)

t_

_ _ " _> _-_

Figure 3. Near-Term Schedule for the AFFA Program

Page 12



The Conceptual Study comprised the Requirements Definition, Requirements Acquisition,

Engineering Description, Analytical Modeling, Verification Plan, Architecture Configura-

tion, the C2 Loaner, and the Fault Tolerant Data Bus subtasks.

In the Requirements Definition phase, we defined a format for requirements that the appli-

cation designer may place upon the computational system. Relevant requirements data in-

clude reliability, maintainability, availability, testability (RMAT), performance require-

ments, operational environment, mission scenario, and maintenance strategy.

In the Requirements Acquisition phase, available data were obtained for the Army missions

of interest from C2SID, CECOM-C 3, and RAMECES. These requirements were deter-

mined by the Computer-Aided Low Altitude Helicopter Flight and the Ground Maneuver

Systems Fault Tolerant Navigation Processor programs. For brevity these applications are

henceforth referred to as the "TF/TA/NOE" (for Terrain-Following/Terrain-

Avoidance/Nap-of-the-Earth) and the "Ground Vehicle" applications, respectively. The re-

quirements were transformed where possible into the format defined in the Requirements

Definition phase.

In the Engineering Description phase, a detailed description was generated of the compo-

nents of AFTA and how they are assembled and operated. The engineering description is

sufficiently detailed to provide the analytical models with parameters such as throughput,

memory, intertask communication bandwidth and latency, input/output bandwidth and la-

tency, weight, power, size, volume, and component failure rate as a function of the archi-

tecture configuration chosen for a given Army application. In addition, the engineering de-

scription provides details on how to develop software for AFTA and operational details on

fault tolerance and recovery schemes.

In the Analytical Modeling phase, analytical models were constructed to predict whether a

given AFTA configuration will meet the requirements as specified in the Requirements Ac-

quisition phase. These models are parameterized so as to be useful in estimating the charac-

teristics of the Brassboard as well as multiple deployable AFTA configurations.

The Verification Plan phase comprises the construction of a plan for demonstrating that the

analytical models predict system characteristics with reasonable accuracy. This plan is exe-

cuted in the Dem/Val phase.

In the Architecture Configuration phase, the AFTA architectural parameters were adjusted

to realize conceptual architectures for the two Army missions: the helicopter TF/TA/NOE

mission and the Ground Vehicle mission. The analytical models developed in the Analytical

Page 13



Modelingphaseareused to predict AFTA reliability, availability, weight, power, volume,

and Life Cycle Costs for these missions.

In the C2 loaner subtask, the AFTA Cluster 2 (C2) was delivered to C2SID for evaluation

and familiarization with AFTA technology. The C2 is a quadruply redundant uniprocessor

version of the AFTA and hosts the same basic Ada Run Time System and software devel-

opment environment as AFTA. The AFTA software development environment was pur-

chased and delivered to C2SID in the Conceptual Study phase so jump start the AFTA ap-

plication software development process. In a related effort, the testability of the C2

Network Element (NE) was evaluated by writing and demonstrating self-test software; the

lessons learned from this exercise will be used to improve the testability of the AFTA

Network Element.

Common-mode faults are those which occur in more than one copy of a redundant compu-

tation due to a common source. Thus, they can defeat redundancy-based fault tolerance

techniques such as those used in AFTA. A methodology for detecting and recovering from

common-mode faults in AFTA was developed. In addition, a plan for verifying the effec-

tiveness of the common-mode fault tolerance techniques comprising the methodology was

formulated.

As a separate but related effort, an FTDB was developed to provide a fault tolerant net-

working system for AFTA and other digital systems, including the Silicon Graphics dis-

play processor, the Merit Technologies MT-1 VME system, the US Air Force Real-Time

AI System (RTAIS), sensor and image processors, and flight and engine controls. The

objective of the fault-tolerant data bus effort is to provide highly reliable end-to-end com-

munications between the above systems. The conceptual design of the FTDB covered many

aspects of network design, including media technology, media access control, topology,

routing, OSI protocol stacks, and fault detection and recovery. In addition to these tradi-

tional network topics, the FTDB also encompasses techniques from the area of fault-toler-

ance, including Byzantine resilience and authentication protocols.

2.4. AFTA Brassboard Demonstration and Validation

Following the completion and evaluation of the Conceptual Study phase the Brassboard

Dem/Val phase begins. The first year of Dem/Val comprises the Detailed Design phase,

while the second year comprises the Fabrication, Integration, and Validation phase. The

program is currently at the completion of the Detailed Design phase. An AFTA has been

constructed and demonstrated on two applications, partially under separate funding.

Page 14



2.4. I. Detailed Design

The intent of the detailed design phase is to design the hardware and software architectures

recommended from the Conceptual Study phase, in preparation for Brassboard fabrication

in the Fabrication, Integration, and Validation phase. It comprises work in the following

areas.

The design of the Brassboard AFTA Network Element is completed. The design of the

backplane-independent components of the NE is described in VHDL at the behavioral level.

A comprehensive set of NE self-tests is designed, and a software simulation of the NE is

constructed for use in Operating System and other AFTA software development efforts.

The basic AFTA Ada run time system (Ada RTS) is designed, documented, and key sys-

tem functions are prototyped. The Ada RTS includes task scheduling, intertask communi-

cation, input/output services, and Fault Detection, Identification, and Recovery functions.

The quantitative models of AFTA's reliability, availability, weight, power, volume, failure

rate, life-cycle cost, and other parameters are refined as design and application mission de-

tails become available.

The schedulable milestones for the Detailed Design phase are listed below. All of this work

has been completed as of the end of the Detailed Design phase.

Hardware:

.

.

3.

.

Complete the detailed design of the AFTA Brassboard Network Element.

This includes schematics, netlists, PAL equations, microcode, timing dia-

grams, parts lists, and board layouts.

Complete the Network Element Simulator.

Complete the fabrication and testing of a single AFTA Brassboard Network

Element.

Complete the VHDL behavioral model of the Network Element Scoreboard

and Data Path Board.

Basic Ada Run Time System:

.

2.

3.

4.

Complete the Software Development Plan.

Complete the Ada RTS Software Requirements Specification.

Develop a debugging/development support environment.

Perform the Detailed Design of the Ada run time system.

Page 15



5. Codeand test a key subsetof Ada run time systemfunctions with the
NetworkElementSimulator.

6. Testakey subsetof Ada run timesystemfunctionswith theexistingAFTA
BrassboardNetworkElement.

Quantitative Models:

1. Update the quantitative models of AFTA based on evolving engineering data

and mission details.

2.4.2. Fabrication, Integration, Validation

In the Fabrication, Integration, Validation Phase one or more Brassboard AFTAs are as-

sembled. The AFTA's Network Elements (NEs) are fabricated and tested, the Processing

Elements (PEs), Input/Output Controllers (IOCs), backplanes, and Power Conditioners

(PCs) are purchased, and the Operating System (OS) software is completed.

After fabrication and integration of the components the Brassboard is delivered to the Army

for demonstration and validation. For the demonstration, a representative application is

ported to AFTA. Subsequently, the critical parameters of AFTA are evaluated according to

the verification plan described in Section 11 of the Conceptual Study.

The following parameters are measured, both with and without injected faults in relation to

the TF/TA NOE application:

1. Delivered throughput per processing site

2. Available memory per processing site

3. Effective intertask communication bandwidth

4. Effective I/O bandwidth

5. Iteration rate of a task

6. Reliability

7. Availability

8. Testability

9. Cost per unit of service

10. Weight, power, and volume

The fault recovery and common mode fault tolerance capabilities specified by C2SID will

also be demonstrated.

Page 16



Deliverablesof thisphaseincludeoneor morecopiesof theBrassboard,detailedtestand

evaluationresults,andrefinedanalyticalmodels.Thedocumentationis providedboth in

hardcopyanddigital format.

2.5. Documents Used and Generated Under This Contract

The documents used under the AFTA Detailed Design phase are listed in Section 6,

"References." The documents generated under this contract are listed below.

1. NASA Contractor Report 189632, Volumes I and II, "Advanced

Information Processing System: The Army Fault Tolerant Architecture

Conceptual Study," July 1992.

2. AFTA Detailed Design Phase Documentation, Volumes I (NASA Contractor

Report 194924, "Advanced Information Processing System: The Army

Fault Tolerant Architecture Detailed Design Overview"), H, and III, June

1994.

3. "System Performance Modeling and Analysis of a Fault-Tolerant Real-Time

Parallel Processor," R. J. Clasen, Master of Science Thesis, Northeastern

University, May 1993.

2.6. Overview of Detailed Design Phase Deliverables

The primary deliverables of the AFTA Detailed Design phase is a set of engineering docu-

ments which are adequate to facilitate the construction of the AFTA Brassboard. The doc-

uments represent the state of the design prior to Brassboard fabrication and, by necessity,

do not reflect design updates resulting from the Brassboard fabrication, validation, and

verification. The documentation consists of three volumes.

Volume I, "Overview Volume," contains the program overview and status, updated per-

formance and reliability models, and an description of the deliverables of this phase of the

AFTA development.

Volume 11, "AFTA Software Documentation," contains the AFTA Software documenta-

tion, including the Software Development Plan (SDP), the Software Requirements Specifi-

cation (SRS), and a directory of the files delivered on digitally readable media. Source code

listings are provided for the AFTA Ada Run Time System, the Network Element

Simulator, the Performance Measurement and Data Processing software, the Static Code

Execution Time Analysis software, and the Network Element Self Test software.

Page 17



VolumeHI, "AFTA NetworkElementhardwareDocumentation,"containsanupdatedver-
sionof Section4 of theConceptualStudydescribingtheoperationaloverviewof theNet-

workElementandadirectoryof all filesdeliveredondigitally readablemedia.Boardlay-
outs,schematics,ProgrammableArray Logic (PAL) equations,VHDL sourceandtest-

benchcode,VHDL testbenchinputsandoutputs,timing diagrams,microcode,andField

ProgrammableGateArray(FPGA)designsareprovidedfor theNetworkElement.

Page18



3. Updated Reliability Model

The AFTA reliability and availability are strong functions of the policies which are used to

manage the redundant AFTA resources. A design change in the FDIR software arising out

of the Detailed Design phase may have an impact on the reliability obtained using one of

these options. Before describing the design change and its quantitative impact on AFTA re-

liability, the two redundancy management options selected for analysis under the AFTA

program will be reviewed.

3.1. Review of Two AFTA Redundancy Management Options

The reliability and availability of an AFTA implementation is a function of the number of

FCRs and PEs, the VG redundancy levels, the mission environment, the operational and

maintenance scenario, and fault recovery procedures. Two classes of AFTA fault recovery

options were analyzed in the AFTA Conceptual Study, and each one has a different impact

on the overall AFTA reliability and availability.

The first class of options, of which the graceful degradation and Network Element masking

in Section 5.6.6 of the Conceptual Study Final Report are examples, are appropriate for an

operational mode in which little if any time is available for fault recovery. In this case, a

faulty component in a redundant VG or an NE is immediately disabled upon detection, with

no lengthy fault recovery attempted. No effort is made to discriminate between transient

and permanent faults for the purpose of performing on-line recovery, in effect treating all

faults as permanent until a more relaxed operational regime is entered. This option has the

advantage of incurring no dropout of functionality, but has the disadvantage of irreversibly

reducing the redundancy level of the faulted VG and hastening its demise due to redun-

dancy exhaustion. Therefore it may be viewed as being best suited for short missions hav-

ing fast real-time constraints, such as real-time control of mission-critical helicopter func-

tions.

Page 19



j]

Figure 4. Graceful Degradation of Quadruplex VGI

Figure 4 illustrates this fault recovery option: after the first failure of member A of quadru-

ply-redundant VG1, the faulted member is disabled, reducing VG1 's redundancy level to

triplex. A second failure of one of VG l'S members, say B, reduces its redundancy level to

"degraded triplex." For a degraded VG, the Network Element's main data path packet voter

masks the input from the faulted member and does not include it in the vote. The

Scoreboard, however, continues to consider a degraded VG's faulted channel when calcu-

lating the VG's voted Output Buffer Not Empty (known as OBNE, an indication that the

VG has a packet to be transmitted from its Output Buffer) and voted Input Buffer Not Full

(IBNF, an indication that the VG is capable of receiving at least one packet in its Input

Page 20



Buffer)t. This is to allowafaultedmemberof adegradedVG to remainin synchronization

with its parentVG to facilitaterecoveryoperations.Thiscapabilityis morerobustanduse-

ful for degradedquadruplexVGs thanfor degradedtriplex VGs.

Figure5. ProcessorReplacementRedundancyManagementfor QuadruplexVG1

A third failure in VG1,sayof memberC, reducesits redundancylevel to simplex, anda
fourth failureresultsin the lossof thefunctionality supportedby VG1.Theprobability of

successfullytransitioningfrom a faulted degradedtriplex VG to a nonfaulty simplex is

significantlylessthanunity,andisrepresentedby the"duplexcoverage,"CD.

t SeeSection4 of theConceptualStudyFinalReportfor adiscussionof this terminology.

Page21



Whenafault recoverytimeon theorderof asecondof twois permissible,a widerrangeof

fault recoveryoptionsareavailable.Representativesof this classof optionsarelisted in

Section5.6.6of the ConceptualStudyFinal Reportasprocessor resynchronization, pro-

cessor reintegration, processor replacement, processor replacement with initialization, task

migration, and Network Element resynchronization. All of these recovery options are char-

acterized by their capability to seek and find components sufficient to maximize the likeli-

hood of forming a desired configuration of redundant VGs, followed by either initializing

or copying the state of the newly reintegrated component into agreement with the surviving

members of the faulted VG. As is mentioned earlier, this process, while maximizing the ef-

fective use of the reconfigurable AFTA components, consumes one to two seconds to per-

form. As an example of such a strategy in the context of the previous example, we recon-

sider the case of a processor replacement fault recovery option applied to VG1 t. After a

failure of member A of VG1, VGI's redundancy level can be restored by switching in (say)

the PE adjacent to member A. After the second failure of member B, a spare processor may

be reintegrated, again restoring VGI's quadruplex redundancy level, and so on and so forth

(Figure 5). This can continue until all the spares allocated to repairing VG1 are exhausted,

at which point the VG1 fault recovery policy may revert to the graceful degradation policy

described above, or another policy may go into effect.

The more leisurely fault recovery options in this class are more suited to less stressful real-

time operational regimes and missions, such as during the hiatus phase of the flight mission

where availability is to be maximized, or during a long ground mission where one or two

second dropouts are a reasonable tradeoff for significant mission longevity enhancement.

3.2. Modifications Arising from Detailed Design Phase One

Section 9 of the Conceptual Study presented formulations of the probability that AFTA can

perform its intended functions, i.e., form the requisite number of functioning VGs, when

managed according to the two fault recovery policies outlined above. These formulations

remain unchanged as a result of the evolution of the detailed design.

Mission times, environments, and failure rates were also presented in the Conceptual

Study. These also remain unchanged. In the Conceptual Study, the AFTA component fail-

ure rates were calculated assuming that the hiatus environment corresponds to the Ground,

Fixed (GF) environment, and the mission environment corresponds to the Rotary Wing

Aircraft (AR) environment, both described in MIL-HDBK-217E. These values are un-

_ Different VGs may have different fault recovery options, and the same VG's fault
recovery option can vary over the course of a mission.

Page 22



changedandarerepeatedbelowfor convenience.Missiontimesfor thehelicoptermission

rangedfrom 1to 8hours,aMinimumDispatchComplementof 6VGswasassumed,anda

duplexcoverageof 0.50is used.

Component GFfailure

rate,perhour
1.92E-5PE

NE 4.08E-5 1.85E-4

PC 1.59E-5 5.40E-5

FCRBack-

planeBus

1.92E-6

AR failure

rate,perhour
6.58E-5

6.58E-6

Table1.AFTA ComponentFailureRatesfor HelicopterMissionScenario

Volume11Iof theDetailedDesignPhaseOneDocumentationdescribeshow theFaultDe-

tection, Identification,andRecovery(FDIR) designhasbeenchangedto facilitate imple-

mentation,testing,validation,andtemporaldeterminism.In thenewdesign,all fault diag-

nosesandrecoveryactsareexecutedor controlledby a singleSystemVirtual Group,as

opposedto theConceptualStudydesignin which eachVG wasresponsiblefor its own di-

agnosisand, in mostcases,recovery.The netresult of this FDIR designmodification is

thatthemeantime betweenerrormanifestationandrecoveryis increasedfrom avalueof 10

millisecondsto a larger,currentlyundetermined,value.It isexpectedthatthis valuewill be

lessthanonesecond.Theanalyticalparameterwhichrepresentsthe inverseof therecovery
timeis calledtherecoveryrateanddenotedg in theAFTA dependabilitymodels.Thefol-

lowing sectionsanalyzetheeffectof varyingthisparameteronoverallAFTA missionreli-

ability andavailability.Thevariationwill beperformedoverawideenoughrangeto ensure

thatthefinal AFTA recoveryrateis coveredby theanalysis.

3.-3. Effect of Recovery Rate on AFTA Mission Reliability

During a mission having fast hard real-time constraints, the AFTA VGs are managed under

a "graceful degradation" redundancy management policy. Under this policy, system fail-

ures may occur as a result of the arrival of a second fault while AFTA is in the process or

recovering from a preceding fault. The probability of this occurrence is proportional to the

mean time required for recovery, or, equivalently, inversely proportional to the recovery

rate g.

Page 23



To illustratetheeffectof antherecoveryrateonAFTA missionreliability, theformulation

for thereliability of the AFTA under this policy is repeatedbelow from theConceptual
Study.

Let E()_,It, t, r) representthereliability atmissiontimet of a VG havingprocessorfailure

rate2_,fault recoveryrateIt, andredundancylevel r, assumingPEfaults only.This is the

probabilityof occurrenceof all operationalstates(redundancylevelsof 1,2, 3, or 4) of the

VG minustheprobabilitythattheVG failsdueto near-coincidentPEfaults.

(if i(1-e-_'_ r'i] 2
Ci e-X_ r(r-1)t t , r > 0

_t
E ()_, It, t, r) =

0 ,r<0

where ci is the probability that a VG of redundancy level i+l can successfully degrade to a

VG of redundancy level i. The second term in the above equation is the approximate prob-

ability that the VG suffers catastrophic failure due to near-coincident PE faults.

If r>l, then

If r=l, then

Cl> i=l

1.0, i=2

ci = 1.0, i=3

1.0, i--4

CD= 1.0

The parameter CD ranges from 0.5 to 0.90, depending upon the level of effort put into tol-

erating faults in duplex VGs. A safe assumption is usually CD = 0.50, since at worst the re-

dundancy management function can, upon detecting a fault in a duplex VG, randomly

guess which one is faulty and mask it out.

Let nelist(VGi) represent the set of FCRs which contain at most one channel of VGi. For

example, if quadruply redundant VG1 has members in FCRs 0, 1, 3, and 4, then

nelist(VG1) = {0, 1, 3, 4}.

The conditional VG reliability becomes

R(VGi Ino FCR fauks) = E(_.pE, Itp_ t, redlevi)

Page 24



R(VGi IFCRjfaulty) =/F'(_'rE' t.trE,t, redlevi),j_ nelist(VGi)

_E(_.rE,_trE,t, redlevi-1),j_ nelist(VGi)

and

_E(_.rE, l.trE,t, redlevi),j_ netlist(VGi nelist(VGi),
and k_

_] E(_,pE, _trE_ t, redlev i- 1), j_ netlist(VG i and k_ nelist(VGO,

R(VGi I FCRs j, k faulty ) = _E (_,rE, _trE, t, redlev i-1 ), j_ netlist(VG i and k_ nelist(VGi),

E(),.rE, ktrE, t, redlevi-2), j_ netlist(VG i and k_ nelist(VG i)

This formulation for the conditional VG reliability is used to compute PGD:

PGD = 1--I R(VGi I no FCR faults) / Pr(no FCR faults)

VG_F_ FjeS ]

+N_ 1-I R(VGi I FCR n faulty)] Pr(FCR n faulty)
n=l [VGi_F t Fj_S

NNEs NNEs l" ]

+K _ _ / 1-_ R(VGilFCRsnandmfaulty ) Pr(FCRnfaulty)Pr(FCRmfaulty)

n=l m=l. m_IVGi_F _ FjES

Lengthy fault reconfiguration times can result in a significant probability of AFTA failure

due to a second fault occurring while AFTA is recovering from a prior fault. The AFTA re-

liability and availability models compute the probability of failure due to near-coincident

faults and attrition to allow estimation of their relative importance and the consequent need

for intensive verification of reconfiguration time. Table 2 illustrates the probabilities that a

single VG suffers failure due to attrition and near-coincident faults for the helicopter mis-

sion described in the Conceptual Study. A 100Hz recovery rate was used in this calcula-

tion, and the Minimum Dispatch Complement was assumed to be 6 VGs. Note that the two

contributors to VG failure are of commensurate magnitude when quadruplex VGs are used

for short mission times, and therefore statistically significant verification of reconfiguration

time becomes an issue in this case. In general, large variations in the AFTA mission dura-

tion or re.configuration time may force this quantity into prominence.

Page 25



VG Redundancy Level Probability of VG Fail-
ure due to Attrition

1 Hour Helicopter
Mission

Probability of VG Fail-
ure due to Near-Coin-

cident Faults

Triplex 6.49E-09 7.21E- 14

Quadruplex 7.14E-13 1.44E- 13
2 Hour Helicopter

Mission

Triplex ] 2.59E-08 [ 1.44E-13Quadruplex 4.84E- 12 2.88E- 13

Table 2. VG Failure Probability Due to Attrition and Near-Coincident Faults - 100Hz

Recovery Rate as Assumed in Conceptual Study

The following table shows the sensitivity of VG failure probability to varying recovery rate

over two orders of magnitude. The 100Hz column repeated from the Conceptual Study to

allow comparison with this design baseline.

Recovery 100 Hz 10 Hz 1 Hz
Rate

Attrition Attrition AttritionVG

Redundancy
Level

Near-Co-
incident
Faults

1 Hour

Helicopter
Mission

Near-Co-
incident
Faults

Near-Co-
incident
Faults

Triplex 6.49E-09 7.21E-14 6.49E-09 7.21E-13 6.49E-09 7.21E-12

Quadruplex 7.14E-13 1.44E-13 7.14E-13 1.44E-12 7.14E-13 1.44E-11
2 Hour

Helicopter
Mission

Triplex 2.59E-08 1.44E- 13 2.59E-08 1.44E- 12 2.59E-08 1.44E- 11

Quadruplex 4.84E-12 2.88E-13 4.84E-12 2.88E-12 4.84E-12 2.88E-11

Table 3. VG Failure Probability Due to Attrition and Near-Coincident Faults - 100Hz,

10Hz, and 1Hz Recovery Rate

3.4. Effect of Recovery Rate on AFTA Mission Availability

Variations in the fault recovery rate has no effect on AFTA Mission Availability.

Page 26



4. Updated Performance Model

The Detailed Design phase resuked in the implementation of a hard real-time Ada run time

system which includes a multitasking rate group dispatcher, interprocess message passing

functions, FD1R, and Input/Output Services. In order to construct a plausible performance

model it is necessary to empirically measure the execution time of these functions. When

their execution times vary, it is necessary to determine the parameters which affect this

variance and determine the sensitivity of execution time to such parameters.

This section includes preliminary performance measurements of the rate group dispatcher,

context switch times, message queuing and retrieving (with and without FDIR), and FDIR

functions. All measurements were taken on an AFTA RTS which was interfaced to the

Network Element Simulator (as opposed to hardware-implemented Network Elements).

Before the detailed performance measurements are presented, an review of the basic AFTA

run time system functions is provided.

4.1. Overview of AFTA Ada RTS Scheduling

The AFTA is designed for hard real-time applications. A rate group scheduler has been se-

lected as the primary scheduling paradigm for the Ada RTS. This section discusses the ra-

tionale for the selection of this paradigm and illustrates its use to achieve hard real-time re-

sponse for periodic and aperiodic hard real-time tasks.

Hard real-time schedulers must ensure that task executions, inter-task interactions, and in-

teractions between the tasks and the outside world are predictable and deterministic, with

guaranteeable worst-case response time. The means for validating this guaranteed response

time must be an integral part of the scheduling paradigm. The scheduling paradigm should

exhibit formal tractability to facilitate its formal specification and verification to reduce the

occurrence of scheduler design and implementation errors. The scheduler should enforce

the notion of"separation of concerns" to permit the combinatorially explosive validation of

a complex application to be accomplished via the more tractable option of validating its

constituent parts and their interactions. Guaranteeing these properties is often in direct

conflict with programming and maintenance ease. An engineering tradeoff must be per-

formed keeping in mind the disastrous ramifications of failure to meet a hard real-time

deadline and the high life-cycle cost of software maintenance.

Relevant developments influencing the design rationale of the AFTA scheduler include Rate

Monotonic Scheduling [Liu73], the MARS (MAintainable Real-time System) [Kop89], the

Page 27



ReliableComputingPlatform(RCP)[DiV90], andtheNASA SpaceTransportationSystem
GeneralPurposeComputer(GPC)([Car84],[Han89]).

4.1.1. Task Scheduling on a Single Virtual Grgop

The AFTA supports two different paradigms for scheduling tasks on a single Virtual

Group. The f'trst, known as rate group scheduling, is suitable for task suites in which each

task has a well-defined iteration rate and can be validated to have an execution time which is

guaranteed to not exceed its iteration flame (the inverse of its iteration rate). A modification

of rate group scheduling discussed below also allows aperiodic hard real-time events to be

processed. The second style of scheduling, known as aperiodic non-real-time scheduhng,

is available when the iteration rate of a particular non-real-time task is unknown or unde-

f'med. Validation of the temporal behavior of such tasks may be difficult. In AFTA, non-

real-time aperiodic tasks are not allowed to perturb the critical timing behavior of hard real-

time tasks.

In a rate group paradigm tasks executing on each VG in the AFTA are characterized by an

iteration rate. In the AFTA, these rates are nominally 100, 50, 25, and 12.5 Hz, corre-

sponding to rate group identifiers R4, R3, R2, and R1, respectively. A rate group frame

duration is the inverse of the rate group iteration rate; thus the R4, R3, R2, and R1 frames

are 10, 20, 40, and 80 ms in duration, respectively. All frame boundaries are determined

by crystal oscillator-controlled interrupts. The frequencies and number of rate group frames

are readily changed as the apphcation dictates. Frames executing on different VGs in the

AFTA need have no particular phase relationship with each other, although a desired phase

relationship among certain frames may be enforced in some applications using a multi-VG

rate group phasing method described below.

Within a particular rate group frame, tasks are scheduled using a nonpreemptive static

schedule. When scheduled, a task executes to self-suspension. The exact time of execution

of a particular task in the rate group frame will be in general unknown to the application

programmer, and interactions between RG tasks and other entities occur only at RG

boundaries, similar to the MARS temporal encapsulation concept. Instead, AFTA guaran-

tees that all tasks within a rate group will be executed in the order specified by the applica-

tion programmer sometime within the appropriate rate group frame. Figure 6 illustrates the

basic idea of a single rate group.

Page 28



Beginning of
Rate Group

Frame

F
R4:10 ms
R3:20 ms
R2:40 ms
RI: 80 ms

Tasks within Rate Group

T5

Arbitrary lntra-Rate Group
Communication Possible within

Frame

Tl1 1 14I
In its

Deliv_'ed
to Rate
Group
Tasks

End of Rate
Group Frame

|:_._,_:_:_
•".,:.._._..': x _-

_-_._.r: - -. :_:._

:_:_,_
,.:: _._:

Outputs
Transmitted

from Rate
Group Tasks

Figure 6. Rate Group Frame - Programming Model

To achieve multi-rate group execution on a VG, lower frequency rate group tasks are inter-

rupted on a periodic basis to allow the higher-frequency rate groups to execute (Figure 7).

The interruption process is Uansparent to the application programmer.

minor frame index:

_o :--_ E2 -_3 -_4 ---"s -_6 "7 --:

_"_" _" "rei",_" aa"'._" _" ,_" _c_"_" _a""_'"_a" ._." _" _
_N Frame _ Frame _ Frame _ Frame _ Frame _ Frame ._ Frame _ Frame

_\\\\\\\\\\\NNN\\\\\\\\\_\\\\__\\\\\\\\\\\\\\\\\\\_

- -_.__ - . -__ ,

. . -

I/O, Message-Passing

Figure 7. Architecture of RG Frames on a Single VG

Task overruns are detected by the rate group dispatcher at the end of each RG frame. Since

all tasks within a frame nominally execute to self-suspension, the rate group dispatcher can

detect a frame overrun by checking the suspension status of tasks which should have corn-

Page 29



pletedan iterationin theprecedingrategroupframe.Notethatsincethetaskwhichcaused

the overrunmay itself havecompletedin theframeyet causeda subsequently-scheduled

taskto overt'un,this techniquedoesnotconclusivelyidentify whichtaskis responsiblefor
theoverrun.Identificationof theculprit taskis achievedby comparisonof theactualmea-

surementof eachtask'sexecutiontimewith its predictedexecutiontime (notethatthis in-

formation is alreadyneededfor constructionof thetaskschedule).Severaloverrunhan-

dling optionsexistandmustbeselectedonatask-specificbasis.Examplesincludeaborting

or restartingtheculprit task,or resumingthepreemptedtaskfrom its preemptionpoint at
thestartof its nextRGframe.

Rategroupschedulingmaybeviewedasacompromisebetweendynamicpreemptiveand

staticnon-preemptivescheduling.Within arategroup,astaticnonpreemptivescheduleis

followed. Higher frequencyrategroupspreemptlower frequencyrategroupsin avariant

of ratemonotonicscheduling[Liu73] modified for tasksuiteshavingharmoniciteration

frequencies.Becausethey interactonly on frameboundaries,thesetof rategroupsmaybe

viewedasa temporallyencapsulatedsetof nonpreemptivetaskswhich maybe formally
treatedindependently.

4.1.2. Intertask Communication

All communication to tasks within a rate group is delivered and made available to the rate

group tasks at the beginning of their rate group frame. All communication emanating from

tasks within a rate group is queued within the rate group frame and transmitted at the end of

that rate group frame. All messages not read by a RG task by the end of its frame can either

be retained or deleted, with appropriate notification given to the recipient task. All commu-

nication emanating from a non-rate-group task is queued and transmitted on the frame

boundary immediately after the one in which either (1) all copies of the task have requested

transmission of the message, or (2) a majority of the copies of the task have requested

transmission of the message and a user-defined timeout has expired.

4.1.3. Overview of Minor Frame

A simplified description of the sequence of events occurring within a minor frame of a sin-

gle VG is depicted in Figure 8. The frame begins with a Frame Timer interrupt which is

generated by a crystal oscillator resident on each member of the VG. Immediately after the

Frame Timer interrupt, the VG synchronizes its members using a synchronizing act as de-

scribed in the AFTA Conceptual Study Final Report, and sets up the Frame Timer interrupt

for the next minor frame. This reduces the skew with which the members of the VG receive

Page 30



thenextFrameTimer interruptto theNetworkElement'spost-synchronizationskewplus
thecrystaloscillators'drift overtheframe.

(not to scale)

Frame Timer I/O Completion Frame Timer

Rupt, Timer Rupt, Rupt,

VG Sync VG Sync VG Sync

I/O

Transactions
Dispatcher

--------Application Tasks_

m-

RGI..4 Queued Message Passing

(R4 tasks may perform message

Dassinq at anv time)

Figure 8. Overview of Minor Frame

After the synchronizing act, the I/O dispatcher performs all I/O activity as close as possible

to the synchronizing act in order to minimize I/O jitter. For !/O performance reasons, it is

possible for each member of a VG to perform different I/O transactions and thus not to be

in synchrony after performing such operations. Therefore an I/O Completion interrupt is

scheduled on all VG members at a user-definable time after the Frame Timer interrupt in

order to snap them back into synchronization. The Frame Timer - I/O Completion interrupt

interval may vary for each frame based on the !/O transactions performed in that frame, and

is determined by the most lengthy set of transactions the VG's members must perform.

This interrupt is generated by a crystal oscillator on each VG member.

After the I/O Completion interrupt another VG synchronization is performed by the RG

dispatcher, and messages previously queued for transmission by rate group tasks which

completed in the prior frame are transmitted to the Network Element. Messages are also

read from the NE to the VG at this time. The FDIR task is scheduled after message pass-

ing, followed by the I/O Source Congruency and Redundancy Manager and I/O Processing

tasks. The I/O tasks are responsible for transmitting single-source input data from one

member of the VG to the others, I/O Controller/Device error processing, and deriving and

formatting a known good copy of redundant input data for delivery to the destination appli-

cation task. The I/O Processing task is also responsible for transmitting predetermined in-

put data from one VG to another.

Page 31



After theI/O tasksexecute,theapplicationtasksarescheduledandexecuteaccordingto the

rategroupschedulingparadigmuntil thenextFrameTimerinterruptoccurs.

4.1.4. Aoeriodic Hard Real-Time Task Schedulin_

The AFrA scheduler supports the execution of event-triggered hard real-time aperiodic

tasks by statically assigning the processing associated with each given event with an RG.

An appropriate RG is determined a priori by the maximum allowable time between the oc-

currence of the event and the VG's output response. Events may of course occur at any

time. The AFTA Input/Output System Service (IOSS) is scheduled at the beginning of each

frame and is responsible for reading the status of any events to be processed in subsequent

frames. Thus there is at most one minor frame's latency between the time of an event's oc-

currence and the time at which the IOSS processes the event for delivery to the destination

task. An event processing task may be assigned to rate groups 1 through 4, in some cases

preempting iterative tasks as outlined below. Multiple event processing tasks may be

scheduled on a VG. The following table illustrates the maximum event response time as a

function of the RG containing the event processing task.

Rate Group

2

3

4

Maximum Event

Response
Latency, # Minor

Frames

16

Maximum Event

Response
Latency, ms

(10 ms Minor
Frame)

160

8 80
4 40

2 20

Table 4. Maximum Event Response Latency vs. Rate Group

Figure 9 shows an event occurring in frame 0 of a rate group schedule. If the event pro-

cessing task is in R4, then the response from the event is delivered at the end of frame 1. If

the task is in R3, the response is delivered at the end of frame 3. If the task is in R2, the re-

sponse is delivered at the end of frame 7, and if the task is in R1, the response is delivered

at the end of frame 7 of the subsequent major frame (not shown in the figure).

Page 32



Event

i,  tpu _output,tom
R4 Event R3 Event

Processing Processing

-latency S 2 -latency _ 2
R4 frames R3 frames

-Output from
R2 Event

Processing

-latency S 2
R2 frames

-RI Events Processed during next R1 frame

-latencv< 2 R1 frames

Figure 9. Scheduling of Event-Triggered Hard Real-Time Aperiodic Tasks

Hard real-time event processing tasks are assigned to rate groups and are scheduled based

on the occurrence of the events they are designed to handle. The arrival of a high-priority

event and the consequent scheduling of an event processing task may perturb the timing of

periodic tasks. Several options exist for gracefully scheduling event-triggered hard real-

time aperiodic tasks.

One may validate the task suite's execution time upper-bound in the presence of all "valid"

event combinations. The advantage of this approach is predictability and validatability for

foreseen event suites• The programmer need not worry about frame slippage due to event-

based preemption. The disadvantages are potential poor processor utilization, undefined or

unpredictable behavior should an unforeseen event suite occur, and lengthy validation.

Alternatively, depending on the event to be processed, one can deschedule one or more se-

lected periodic tasks of equal or higher iteration rate. After event processing completion, the

descheduled iterafive tasks must be rescheduled for resumption. It is critical that, regardless

of the selected option, periodic and aperiodic hard real-time task aggregate execution times

must be validated to meet all real-time constraints.

Page 33



4.1.5. Aperiodic Non-Real-Time Task Scheduling

Aperiodic tasks which do not have hard real-time constraints are executed after all rate

group tasks (including aperiodic hard real-time tasks) have been executed. There may be

several non-real-time aperiodic tasks running on a VG and they may be scheduled arbitrar-

ily (unprioritized round-robin, multi-level prioritized, etc.).

4.1.6. Execution of RGs on Multiple VGs

Due to the parallel nature of AFTA, different VGs will execute different RG task suites.

Mapping a multi-VG multi-RG task suite onto multiple VGs can be performed in a straight-

forward manner using application task-to-parallel processor mapping technology embodied

in an integrated schedule generation and analysis tool. Many such tools have been built and

are commercially available. Task suites are expected to change as a function of the mission

mode and system state. This will give rise to multiple mappings. Each such mapping must

be created using the schedule generation and analysis tool. Moreover, the valid transition

sequences from one such mapping to another must be carefully defined and implemented so

as to continuously meet real-time requirements during the transition period. We note that

most tool designs do not appear to handle the generation and evaluation of transitions from

one task mapping to another with respect to continuously meeting real-time conslraints.

The rate group phasing describes the relationship between rate group frames on different

VGs in an AFTA. This phasing can be selected to minimize nondeterminism due to con-

tention for the shared Network Element communications media as described below.

Within the task configuration table, each task is assigned to execute in some rate group.

The rate group determines the frequency at which the task will be executed, and the result-

ing rate group frame boundaries delimit the execution cycle of the task in accordance with

temporal encapsulation. Tasks assigned to the same rate group will execute at the same fre-

quency regardless of their hosting VG, but there may be a time difference between the start

of their first and each subsequent rate group frame if the tasks are executing on different

VGs. This phasing could, for example, be caused by the completion of system initialization

at different times on different VGs. An example phasing of the frames for tasks in a given

rate group on multiple VGs is shown in Figure 10.

Page 34



time

VGI VG2 VG3 VG4 base time
__________________________________________________________________________________________________

phase .................

1

Figure 10. Phasing of RG Frames on Multiple VGs

In the example, the first rate group frame on VG1 starts at some "base time" and the f'trst

rate group frames on the remaining VGs are delayed. The interval between the base time

and the start of its first rate group frame is a VG's phase delay. The phase delay is impor-

tant because it determines the relationship between the frame in which messages are sent by

one VG and the frame in which they are received by another. It also effects the degree and

predictability with which the different VGs contend for the Network Elements and other

physical resources. Predictability with respect to a single VG is enhanced by the message

passing restrictions in the rate group tasking paradigm. In the paradigm, a task's queued

messages are only sent and its received messages are only made available at its correspond-

ing rate group frame boundary. This is indicated in the figure by the arrows at the frame

boundaries. An example from the figure is the messages transmitted after the first frame

from VG 1. They will be received at the start of the first frame on VG2 and VG4, but will

not be received until the start of the second frame on VG3. This relationship of sending

frame to receiving frame will remain constant for subsequent frames if the phasing does not

change.

The time management service (embodied in the rate group dispatcher task) has been de-

signed to achieve a fixed phase between the RGs of different VGs by locking a VG's phase

to the system time maintained by the Network Element. There still remains inherent float

because of the variability of the interval from the start of the frame to when any given mes-

Page 35



sagewill besentorread.This float is increasedwhenVGswhichshareaNetworkElement

havethe samephasedelayor their delaysdiffer by an integernumberof minor frames.

This is becausetheVGsarethenforcedto competefor accessto theNetwork Elementto

sendandreadtheirmessagesattheir frameboundary.Forthisreasonthesimplestphasing

of azerophasedelayfor all VGs is notrecommended.Thephasefield in the VG configu-

ration table is provided to specify the desired phase delay for each VG.

4.2. Performance Models

Two aspects of AFTA system performance are of special importance. The first of these is

the operating system overhead. Due to AFTA's real-time constraints, the overhead associ-

ated with the operating system (OS) tasks needs to be accurately predicted to ensure suffi-

cient time exists for the execution of user application tasks. The second area of concern is

contention for Network Element services by the Processing Elements (PEs). Since up to

eight PEs may be served by one NE, the PEs have to contend with each other for NE ser-

vice. This contention results in decreased performance, as well as variable execution time.

Because of their importance to AFTA system performance, analytical models for both the

operating system overhead and Network Element contention are developed. This section

presents descriptions of each model.

4.2.1. Operating System Overhead Model

This section gives a general overview of the model for the overhead associated with AFTA

operating system tasks. Figure 11 reviews the operating system tasks associated with each

minor frame.

Frame Timer IrO Completion Frame Timer

Interrupt Interrupt Interrupt

I llnterrupt Handier i t nt°cmgt Handler

7 1 'T
•, s ;'?.:'2";'."........... .'.'.'..¢"
,'_," user applicalion tasks I_".':-'ii]

:.:.:.:.:.:.:.:. "

IK) transactions

queued message passing

Figure 11. Overview of Minor Frame

Page 36



Theoverheadrequiredby systemresourceswithin eachminor frameis thesumof theexe-

cutiontimesfor eachof thefollowing operatingsystemtasks:interrupthandier(IH), rate

groupdispatcher(RGD),IO dispatchergOD), FaultDetectionIdentificationandRecovery

(FDIR), IO SourceCongruencyManager(IOSC), andIO Processing(IOP). This over-

headisrepresentedby thefollowing equation:

OH = 11"11+ RGD1 + IOD + IH2 + RGD2 + FDIR + IOSC + 10P

A description of each of these eight overheads follows.

4,2.1.1, Ituerrupt Handler (IH£ ) Overhead

The overhead associated with the fh-st interrupt handler (IH1) is given by the following

equation:

IH1 = (time to update clock) + (time to schedule next interrupt) +

(time to scoop messages)

The time needed to update the system clock and to schedule the I/O Completion Interrupt is

constant, and should be relatively small. Both these events are executed in assembly lan-

guage routines. The time to scoop messages is a function of the number of packets that ar-

rived in the processor's receive queue since the last time a scoop was executed.

4,2,1.2. Rate Group Dis_oatcher - Part One (RGD Z) Overhead

The time needed to execute the first part of the rate group dispatcher (RGD1) can be sum-

marized with the following equation:

RGD1 = (time to update congruent time) + (time to check for RGD2 overrun) +

(time to check for task overruns) + (time to set up next RG interval) +

(time to schedule IOD)

With the exception of checking for task overruns, all the components of RGD1 are con-

stant. Checking for task overruns is a function of the number of tasks which were sched-

uled to suspend themselves during the previous minor frame.

4.2.1.3. I0 Disoatcher (IOD ) Overhead

The overhead associated with the IO dispatcher task is given below:

IOD = (time to increment frame counter) + (time to start IOR execution) +

(time to wait for I0 to complete) + (time to read input data)

Page 37



Thetimeto incrementtheframecounterisconstantandis negligible(one'add'statementin

Ada). Theotherconstantis thetimeto wait for IO to complete.This is simplya wait of a
durationchosenby the applicationprogrammerto ensurethat anyoutward-boundIO is

finishedbeforeanyattemptismadeto readincomingIO data. If IO is strictlyincomingor

strictly outgoing,this wait canbeminimal. The wait is really only necessaryfor IO that

sendsoutdatato somedeviceandthenawaitsareply (in theform of incomingdata)from
thatdevice.

Thetwo remainingconstituentsof theIOD overheadarevariableanddependon thetype
andamountof IO activity to beperformedduringagivenminor frame. Thetime to start

theexecutionof IO requestsdependson thenumberof IO requestsscheduledto run this

minor framethathaveoutgoingdata,andit alsodependson theamountof dataeachIO re-

questsends. Finally, the time to readinput datadependson the numberof IO requests

whichhaveincomingdataandontheamountof incomingdata.

4.2.1.4. Interruot Handler (IH21 Overhead

The overhead associated with the second interrupt handler is the same as that given for the

first interrupt handler and is repeated below:

IH2 = (time to update clock) + (time to schedule next interrupt) +

(time to scoop messages)

Even though both instances of the interrupt handler are modeled by the same equation, in

general the overheads associated with IH1 and IH2 are different. This is because the time

to scoop messages will vary with the number of packets present in the receive queue for the

processor. Typically, the time interval between the occurrence of IH1 and IH2 is less than

the time duration from IH 2 to the next occurrence of IH1. This implies that more packets

may arrive in the receive queue during the interval from IH 2 to IH1, and therefore the mes-

sage scoop time should generally be longer for IH1 than IH2.

4.2.1.5. Rate Group Dispatcher - part two (RGD2 ) Overhead

The execution time for the second part of the rate group dispatcher (RGD2) can be quanti-

fied as follows:

RGD2 = (time to update congruent time) + (time to checkfor RGD1 overrun) +

(time to check for IOD overrun) + (time to send queued messages) +

(time to update queues) + (time to schedule RG tasks) +

(time to increment frame count) + (time to set up I0 interval)

Page 38



Most of the constituents of RGD2 listed above involve simple housekeeping chores and

have constant execution times. The three areas of interest are the time to send queued mes-

sages, the time to update queues, and the time to schedule rate group tasks. The time to

send queued messages is a function of the number of tasks that suspended themselves

during the previous minor frame and the number of message packets that each task had en-

queued since the last time its queue was sent. The time to send queued messages also

varies with the amount of contention for NE service. The OS overhead model assumes no

contention; the effect of contention on the send_queue time is explored in Section 4.2.

The time to update a task's queue is a function of the number of packets received and the

number of packets read since the last time the queue was updated. The time to schedule the

RG tasks is a function of the number of RG tasks that are to be scheduled this minor frame.

4.2.1.6. Fault Detection Identification and Recove_ (FDIR ) Overhead

The overhead of running the Local FDIR task is the same as enqueueing a one-packet mes-

sage; this is the entirety of the Local FDIR task.

FDIR = (time to enqueue message to System FDIR task)

The Local FDIR task simply sends a message to the System FDIR task, and the time

needed to enqueue a one-packet message is constant.

4.2.1.7. I0 Source Congruency Manager (IOSC) Overhead

The IO Source Congruency Manager ensures all members of a redundant virtual group re-

ceive a copy of any input read by another member. The overhead associated with the IOSC

task is given below:

IOSC = (time to exchange input data among VG members)

The time to exchange the input data depends on several factors. The most important factor

is whether or not any input data was read at all. If no data were read in, there is none to

exchange, and the IOSC overhead will be minimal. The IOSC overhead increases as the

amount of incoming data increases. Also important in determining the execution time of the

IOSC task is the number of IO requests executed during the current frame that involved in-

coming IO data.

4.2.1.8. I0 Processing Task (lOP) Overhead

The IO Processing task is responsible for ensuring that all members of a VG performing

redundant IO agree with one redundant input value. This usually involves some data

smoothing or averaging. For instance, the average of three sensor values could be used as

Page 39



the singleinput value. This processingor smoothingof the input datais specificto the

application,andcanvary widelyasfar asexecutiontimeis concerned.TheIOPoverhead

is givenbelow:

lOP = (time to process input data)

Note that there are four IOP tasks, one for each rate group.

4,2,1.9. OS Overhead Summa_

In summary, the total OS overhead for a minor frame is given by:

OH = 1111 + RGDI + IOD + IH2 + RGD2 + FDIR + IOSC + lOP

Many components of this equation have execution times that are constant. Other compo-

nents are variable and depend upon such factors as the system configuration or amount of

message traffic. Looking at the overhead in this manner, the total OS overhead can be

written as a constant value plus some functions of different system parameters. This equa-

tion is given below:

OH = Constant + flnumberof_tasks) + g(numberof_message__packets)

+ h(amountand_typeof_10)

The total overhead is a function of the number of tasks and of the distribution of these tasks

among the four rate groups. It is also a function of the number of message packets that

each task sends. In addition, the amount of overhead is a function of the type and quantity

of IO activity.

One aspect of system performance that is not accounted for in the OS overhead model pre-

sented in this section is contention for NE service by PEs. This occurs when more than

one PE is serviced by a particular NE. The OS overhead model was developed using a

simplex processor which did not have to contend for NE service; only one prototype NE

and a limited number of PE boards were available when the overhead model was devel-

oped. In this regard, the OS overhead model provides a lower bound on the amount of

system overhead. The effect of contention on system performance is examined by the

model presented in the following section.

4.2.2. Contention Model

The second model developed to analyze AFTA system performance examines the con-

tention among PEs for NE services. Each processor sends its queued message packets

during the second part of the rate group dispatcher. If several PEs are sending packets at

the same time, they must wait for the NE, which services the PEs in round-robin fashion.

Page 40



This contentionresultsin performancedelaysbecausethe PEsbusy-wait (i.e., continu-
ouslypoll theNE to seeif it is ready)for eachpacketto beservicedbeforeenqueueingthe

nextone. Sinceperformancedelayscanbecritical in real-timesystems,it is importantto

understandtheeffectsof thiscontentiononsystemperformancebydevelopingananalytical
model.

Thissectiondescribesthemodeldevelopedto analyzethedelaytimesassociatedwith con-

tention.Thiscontentionmodelcanbeusedto determinethebusy-waitdelayfor eachPEas

afunctionof thephasingof theeightPEs.

4.2,2,1. The Model

The contention model is developed without using traditional queueing theory concepts.

Due to the periodic, real-time characteristics of the operating system, NE contention can not

be modeled using a simple Markovian birth-death queueing model; the PEs send their mes-

sage packets once during each rate group frame, so the assumption that packet arrivals are

exponentially distributed is not valid for AFTA. Queueing models with generalized distri-

butions could be used, but the mathematical complexity of these models quickly becomes

excessive. Instead, we have developed a contention model based on empirical performance

data.

The following three sections describe the model used to demonstrate how contention affects

the amount of time needed by a PE to send its message packets to the NE. First, the PEs'

use of the NE to vote and deliver messages is described. Then, an example is given

demonstrating how contention arises when more than one PE is sending packets at the

same time. Finally, a description of the assumptions used to simplify the model is given.

4.2.2.1.1. Processing of Message Packets

Tasks that wish to send messages must fu'st decompose each message into 64-byte packets

and place them in a queue in the PE's local memory. When the rate group dispatcher (part

two) executes during the following minor frame, these message packets are sent to the NE

one at a time during execution of the send_queue procedure. The queued packets are

sent to the PE's transmit queue, which is located in a dual-port RAM memory shared be-

tween the PE and the NE. This is shown in Figure 12. Each of the possible eight PEs

connected to a NE has its own transmit queue. The packets are sent one at a time because

the capacity of the queue is only one packet. The PE can not send a second packet to the

transmit queue until the first one has been removed by the NE. If the PE has more than one

packet to send and the transmit queue is full, the PE must wait until the NE empties the

transmit queue before the PE can transfer the next packet to the lxansmit queue.

Page 41



The NE is notified of a packet arrival from the PE in the transmit queue via a System

Exchange Request Pattern (SERP). The SERP is a string of bytes describing the current

state of the transmit and receive queues for each processor in the system. When a packet

arrives in a transmit queue, a status bit is set, and the next SERP will indicate the arrival of

the packet. The NE is not aware of the presence of the packet until the SERP is processed.

Therefore, there will be a delay from the time when the packet arrives in the transmit queue

until the NE has processed the SERP. If the status bit is set immediately before the SERP

is exchanged, the delay will be minimal and will equal the amount of time needed to pro-

cess a SERP (approximately 16 l.tsec). If the status bit is set just after a SERP was sent,

the delay will be maximal and will equal the time needed to process two SERPs

(approximately 32 lasec).

Page 42



from olher NEs

Network Element A

toother NEs

optical

links
op_cal
links

send queue
vote

and

deliver

packets

scoop

I I
q. .... DPRAM DPRAM q. ..... ,B

transmit receive

queues queues
(1 pkt) (64 pkt)

41 IPE

Figure 12. Message Packet Processing

Once the NE is aware of the arrival of a packet, it can begin to process it. The processing

done by the NE depends on the class of the packet being transmitted. A Class 0 message

requires minimal processing time since no data is involved. Class 1 messages (voted mes-

sages) are typically the most common type of message. Processing a Class 1 packet in-

Page 43



volvesreceivingredundantcopiesof thepacketfrom theotherPEs(connectedto different
NEs) in thevirtual group. Thesecopiesarevoted,syndromeinformationis attached,and

thevotedcopy is deliveredto thedestinationPE. A Class2 packet(sourcecongruency

message)undergoesatwo-roundexchangewith theotherNEsbeforevoting anddelivery.

Afterprocessingapacket,theNE deliversthepacketbyplacingit in theappropriatereceive

queue,asshownin Figure 12. EachPEhasits ownreceivequeuelocatedin thedual-port

RAM sharedamongtheNE andits eight PEs. Thecapacityof eachreceivequeueis 64

packets.Packetsaretransferredto thedestinationPEviaa scoop call, and the packets are

reassembled into messages when the destination VG executes a re t r i eve_me s s age

system call.

4.22.1.2. Contention for NE Services Among Two or More PEs

As mentioned earlier, contention during message packet transmission occurs if more than

one PE is sending packets at the same time. The PE must wait for the NE to clear its

transmit queue before the next packet can be transferred to the queue. If only one PE is at-

tached to the NE, there is no delay. If more than one PE is assigned to the NE, the delay

is a function of how many other PEs are sending packets at the same lime.

An example demonstrating how the busy-wait time can vary is given in Figure 13. The

time needed for a PE to transfer a packet from its local memory to the transmit queue is

constant (approximately 57 gsec). As shown in Figure 13, the NE will be informed that

PE_0's transmit queue is full once the NE has processed the SERP containing this infor-

mation. In the figure, the transmit queue was f'xlled at time tl, and the SERP processing

was completed at time t2. Once the SERP is processed, the NE is able to process the

packet, and the PE is then able to transfer the next packet when the packet processing is

finished and the transmit queue is cleared at time t3. Thus, PE_0 had to wait from time tl

to time t3. Notice that once PE_0 has filled the transmit queue a second time, it has a much

longer delay before it can transfer a third packet. This is because when the queue is filled at

time t4, the NE is busy processing a packet from PE_2 and thus can not immediately

empty PE_0's transmit queue. It is not until time t6 that the NE finishes processing the

SERP that indicates PE_0's queue is full. Since the NE services the PEs in round-robin

fashion, PE_0 will have its queue emptied at time tT. Figure 13 shows that the t4-t7 time

interval is greater than the tl-t3 time interval. The amount of time spent by PE_0 waiting

for NE access increased because it had to contend with other PEs for NE service. Figure

13 also indicates the phasing in the system for this example. The phasing between two PEs

is the difference in time between the start of each of their minor frames.

Page 44



PEO

PE1

PE2

NE

transfer packet wait for xmit

to xmit queue queue to empty

T" /
I I I I

I I I I

I I I I

phasing

process

I I I I

I I I I

I I I I

I I

I I vote & deliver
I I

I constant)

I I I I I I I
, , I I

tl 12 t3 t4 t5 t6 t7

time

I - - I -

process

PE 0

packet

_I_ _I_ _ I -.,= m..___- I- - I - - I - -="-J

process process process process process

PE 1 PE 2 PE 0 PE 1 PE 2

packet packet packet packet packet

Figure 13. Contention Timeline

The result of this increased wait between packets is an increase in the amount of operating

system overhead and a corresponding decrease in the amount of time available for execut-

ing application tasks. The OS overhead increase is a result of the increased time needed for

the rate group dispatcher (part two) to execute, which is a result of the increased amount of

time spent executing the send_queue procedure.

4.2.2.1.3. Simplifying Assumptions

To facilitate the modeling and simulation of this system, some simplifying assumptions

have been made. These assumptions are listed below, and a justification for each is given.

The time delay for the NE to realize that a transmit queue has been filIed is constant. The

NE is made aware of a full transmit queue when it processes a SERP. The time delay from

when the queue has been filled to when the NE realizes it, varies as a function of when the

queue was filled. If it was filled just before a SERP is exchanged, the time delay is the

time to process one SERP (16 I.tsec). If it was filled just after a SERP was exchanged,

the time delay is the time to process two SERPs (32 I.tsec). Thus, the time delay is always

Page 45



somewherebetween16l.tsecand32_tsecTo simplify thesimulation,we will assumethe

timedelayis aconstantandequals25I.tsec.

The amount of time needed for the NE to vote and deliver a packet is constant. This as-

sumption is a combination of the assumption that only Class 1 (voted messages) packets

are transmitted and the assumption that the redundant members of the virtual group are

tightly synchronized. Since the vast majority of system message traffic is expected to be

Class 1 messages (possibly over 90%), we will assume that all packets are Class 1 in order

to simplify the model. Then, we will also assume the NE processing time per Class 1

packet is constant. The only variance that could exist is due to any time difference in the

arrival of redundant copies of the packets to be voted. Because the processors are only

loosely coupled, individual copies of the packets may arrive at different times. However,

the processors are synchronized just before the rate group dispatcher (part two) is executed,

so the skew among the processors should be minimal and can be ignored. Therefore, the

NE processing time for packets will only consist of the time needed to vote the packet, at-

tach syndrome information, and deliver the packet. This time is assumed to be constant

and equal to 10 _tsec.

Operating system overheads are identical for each PE for each frame. The operating system

overhead generally varies with the minor frame number. For example, minor frame 0

usually has the largest OS overhead since all tasks, regardless of their rate group, have

suspended themselves and are ready to send queued messages. Minor frame 1 usually has

a minimal overhead since only RG4 tasks can send their queues. We assume the OS over-

head variance is negligible, and that it is identical for each minor frame for each PE.

Therefore, each minor frame on each PE appears like every other minor frame. Without

this assumption, the time within the minor frame when RGD2 was executed (and thus

when the queued packets can be sent) would vary from frame to frame and would be a

function of the number of tasks, the distribution of tasks among the four rate groups, the

number of packets enqueued by each task per minor frame, and the amount and type of IO

performed by each task per frame.

The phasing among the eight PEs is constant. The phasing between two PEs is the differ-

ence in time between the start of each of their minor frames. In Figure 14, an example of

phasing among eight PEs is given. The phasing between PE_0 and PE_I is indicated in

the figure. We assume that the phasing from one PE to its neighbor is the same. The

amount of phasing is important because it determines how much overlap there is when PEs

are performing a send_queue call. The worst case, in terms of contention, would be

zero phasing; then, all PEs would be sending their queues at the same time, and contention

Page 46



would bemaximized. During simulation,thephasingis variedto noteits effect oncon-
tention.

t send queue I _send queue

PE 1

send queue _send queue send queue

PE 2

send queue send queue send queue

PE 3

_send queue send queue send queue

PE 4

send queue ,sendqueue ,send queue

PE 5

send queue send queue send queue

PE 6

,sendqueue ,send queue send queue

PE 7

send queue send queue send queue
time

Figure 14. Phasing Among PEs

There is no contention for the VMEbus which connects the PEs to the NE. One detail that

has been ignored so far is the bus connecting the PEs to their NE. The prototype AFTA

uses VMEbus to connect the PEs and their NE, and it is possible that the PEs may have to

contend for the VMEbus while transferring their packets from local memory to the transmit

queue. We assume that there is no contention among PEs for use of the VMEbus.

Consider the worst case scenario for data traffic over the VMEbus (zero phasing among the

eight PEs). In this case, all eight PEs attempt to send a 64-byte packet over the VMEbus at

the same time. Empirical performance data show it takes approximately 60 l.tsec for a sin-

gle PE to transfer a packet from local memory to the transmit queue. Therefore, at worst

512 bytes are being sent over the VMEbus in a 60-_tsec period, which corresponds to a

data rate of 8.5 Mbytes/sec. The VMEbus has been rated at 40 Mbytes/sec, so the worst

case amount of VMEbus traffic only uses about 21% of the available bandwidth. As a re-

sult, we consider the assumption of no VMEbus contention valid.

Page 47



4.2.2.2. Contention Simulation

An example timeline for the contention model is given in Figure 15.

PEs each send two packets to the NE for processing.

Time for PE 0 to Send 2 Pkts

xmlt_l_ #1 wall xmlt IOkt

PE I

PE2

xmit_pkt #1 wait xrntt_pkt #2

%J

pl'=asing

xmlt_pkt #1 wait xmlt._pkt #2

NE

pr_serp pr_serp prserp pr..serp pr_serp

PEO PE1 PE2 PEO
pkt #1 pkl #1 _ #1 pkl #2

PE1 PE2
pkt#2 pkt#2

In this example, three

num_pes = 3

num...pkts = 2

t_me

Figure 15. Contention Model Timeline

During simulation, a number of parameters can be varied to note their effect on the time it

takes a PE to send its message packets. These parameters are listed below:

xfer_.pkt This is the time it takes a PE to transfer a packet from its local mem-

o_ space to the transmit queue located in the dual-port RAM shared

by the PE and NE. The default value is 60 gsec.

prserp This is the time it takes a PE to process a SERP. This value is as-

sumed to be constant, and the default value is 25 gsec.

pr._pkt This is the time needed by the PE to process a packet. Processing a

packet includes voting redundant copies of the packet and delivering

the voted packet to its destination. The default value is 10 I,tsec.

num_.pkts This is the number of packets each PE sends during each frame.

For simulation purposes, all PEs send the same number of packets.

The default value is 10 packets per PE per frame.

num__pes This is the number of PEs connected to the NE. The default value is

8 PEs (the maximum possible).

Page 48



phasing The phasing between two different PEs is the difference in time

between the start of each of their minor frames. It is assumed that

the phasing among PEs is constant, as shown in Figure 14. The de-

fault value for phasing is 0 _tsec; this represents worst case con-

tention.

The simulation software is written in C. It is menu-driven, and the user can change any of

the simulation parameters he or she desires. The simulation provides the length of time

needed by each PE to send the indicated number of packets under the given conditions.

4,2,2.3. Results of the Simulation

Of the parameters listed in the previous section, some are of more interest to application

engineers than system designers. Application engineers are concerned with the number of

PEs connected to a NE, the number of packets send by each PE, and the phasing among

the PEs; these are the parameters they control. Their goal is to minimize the time needed

for a PE to send its packets within the time constraints of the application task. The effect of

varying the number of packets sent by each PE is shown in Figure 16. By reducing the

number of packets per PE the delay in sending the packets is reduced, and this is shown in

the graph. For a given number of packets, different amounts of phasing can result in slight

improvements in performance. However, the performance improvement is not very signif-

icant.

I"'II,.#,.1,. II,. II,. II,. #,. #,. I,.I

Phasing (use©)

mmgm I0 PIes

=_m== 8Pkts

mm,lb,4 6 Pkts

4 Pkts

=oD= 2 Pkts

- 12=00

Figure 16. Effect of Varying Number of Packets and Phasing on Time to Send Message

Packets

Another parameter of interest to the applications engineer is the effect of reducing the num-

ber of PEs connected to a NE. Simulation results showing the impact of varying the num-

Page 49



berof PEson thetimeneededby eachPEto sendits packetsaregivenin Figure 17. With

smallamountsof phasing,thenumberof PEshassomeeffecton thetime neededto send

packets. However,the improvementis not large. Considerthecaseof nophasing.With
eight PEs,the time delayis 1230ktsec,but reducingthenumberof PEsto four only de-

creasesthetime delayto 1100ktsec.Reducingthenumberof PEsby 50%resultsin an

improvementof only 10.6%in performance.It is alsointerestingto notethat asthephas-

ing increases,theeffectof reducingthenumberof PEsbecomesnegligible.

Thoughnotshownin Figure17,thetime to sendpacketsfor onePEis of interestbecause
it indicatestheextentto whichcontentioncanincreasesystemoverhead.With only onePE
connectedto a NetworkElement,nocontentioncanoccur;thesimulationpredictsa 1035

l.tsectime delayfor onePEto sendits queuedpackets.The worst-casecontentionoccurs

wheneightPEsareconnectedto oneNE, andtheamountof timeneededfor aPE to send
10packetsin this configuration is 1230ktsec. Therefore,contentioncan increasethe

amountof overheadin sendingpacketsby 18.8%comparedwith the casewhenno con-
tentionoccurs.

o.

o

E

1200 _

8 PEs

11 O0 6 PEs

4 PEs

1000'

2 PEs

900'

0 200 400 600 800 1000 1200

Pissing (use©)

Figure 17. Effect of Varying Number of PEs and Phasing on Time to Send Message

Packets

System designers are also interested in ways to reduce the amount of time spent sending

packets. The parameters controlled by system designers include the time it takes the NE to

process a packet, the time it takes for the NE to process a SERP, and the time needed by a

PE to transfer a packet from its local memory space to the dual-port RAM shared by it and

the NE. Figure 18 shows the effect of varying the process packet time and varying the

transfer packet time. For a transfer packet time of 60 Ixsec, an 80% reduction in process

packet time (from pr_pkt = 10 _tsec to pr_pkt = 2 ktsec) results in a 26.5% performance

improvement.

Page 50



1400 '

:1

. 1200

o

1000

_o 800

I,,-

4O0

--4_- Pr_P_- lo

_,,_ ,•,. _ _ _ _ Pr_Pkl - 8_11"_._* 4 --e-- Pr PRI-6

=o

" ,o' ;o " 3o' " _' " 5o' ;o " ;o

Time to Transfer Packet (usec)

Figure 18. Effect of Varying Process Packet Time and Transfer Packet Time on Time to

Send Message Packets

The system designer also determines the time needed by the NE to process a SERP. Figure

19 presents the simulation data for different values of the process SERP time. As ex-

pected, reducing the process SERP time reduces the delay needed by a PE to send its

packets. With a transfer packet time of 60 _tsec, a reduction in the process SERP time of

80% (from pr_serp = 25 I.tsec to pr_serp = 5 l.tsec) results in a performance improvement

of 24.5%. This is approximately the same effect as varying the process packet time from

10 ktsec to 2 I.tsec.

1300

_ 1200

o 1100

_ 1000

o

o

_ 800.

70O

.,r _ Pr.Seq_ - 20

--,m'- Pr. Serp- 15
J • S al" _ Pr_Serp. 10

r ......x- _...'- _ _ -...- P,S.r_-S
_-" ..--'- _ _...-'_

' ;o - ' ' ' 6'o 7'o10 30 40 50

Time to Transfer Packet (ueac)

Figure 19. Effect of Varying Process SERP Time and Transfer Packet Time on Time to

Send Message Packets

The goal of both the applications engineer and the system designer is to reduce the amount

of time needed for a PE to send its message packets, even when contending with other PEs

Page 51



for NE service. To find out which parameter has the greatest single impact, each parameter

was decreased by 50% of its default value. The results are given in Figure 20. This graph

shows that the largest improvement in performance for a given number of packets is ob-

tained by reducing the transfer packet time by 50%. This implies that if effort can only be

spent reducing one parameter, it should be spent reducing the transfer packet time. The

transfer packet time can be reduced by using direct memory access or by using a faster bus.

A
O

v

18

J¢

O

P
Q

t9

O

Ill
tl.

Q

E
I-

1300"1

12oo'1",=.., q

11oo_,_.
1000 _ "''0''°'° ...... "'",0+01"
80O

700 1 _*"" "&" ""_"

600 I - = - i - i - i - I

0 200 400 600 800 1000

-- "1=-- Default Values

Num_PEs = 4

---o-- Pr_Pkt = 5

- I

1200

Phasing (usec)

Figure 20. Effect of Reducing Each Default Parameter by 50% on Time to Send Message

Packets

The simulation results presented in this section show that application engineers should

minimize the amount of message passing in the system to minimize the effects of contention

on the time needed by a PE to send queued message packets. System designers should re-

duce the time needed by a PE to transfer a message packet from its local memory space to

the dual-port RAM shared by the PE and the NE. This could be accomplished by using di-

rect memory access to accomplish the transfer.

4.3. Performance Measurement Methodology

There are numerous advantages associated with collecting measurements of system perfor-

mance. First, empirical measurements can be developed into analytical models which can

be used to predict system performance under various configurations and workloads.

Second, the empirical performance data can be used to measure the system overhead, a pa-

rameter critical for real-time applications. Finally, when the performance measurements are

Page 52



collectedconcurrentlywith prototypeoperatingsystem(OS)development,potentialper-

formancebottleneckscanberemovedatanearlyandcost-effectivestageof development.

Rawperformancedatais collectedthroughtheuseof softwareprobes. Theprobesarea

softwareroutine which recordsrelevantsysteminformation, including the value of the

systemclock. Theseprobesareplacedaroundor directly insidethecodeof theoperating

systemproceduresof interest. Duringexecution,theprobesareactivatedalongwith the

OSprocedureof interest.Theprobesrecordexecutiontimesandotherparametersof inter-

estin theprocessor'slocal memory. Thereal-timeAFTA systemis not suitedto perform

theanalysisof thisrawdata,sothedataaretransferredto ahostVAX computerfor reduc-

tion andanalysis.TheAFTA IO SystemServicesareusedto movethedata,viaanEthernet

link, from thePEto thehost. Figure21showsthepath theperformancedatatakefrom

initial storagein thedebuglog tofinal analysison theVAX.

FTPP Processing Element (Target)

OS procedure

'/
_o- debug log

!.._.} data

FTPP I/0

System Services

data

Ethernet

VAX (Host)

statistical

analysis

program

(file)

 ata I

Figure 21. Performance Measurement Overview

4.3.1. Software Probes

Software probes are the basic data collection tool. A similar approach to recording perfor-

mance information was taken by researchers at Carnegie Mellon University who used

software "sensors" in their Parallel Programming and Instrumentation Environment

[Leh89]. A description of software probe use with AFTA performance measurement is

given by describing the data that is collected and then providing an example of how this

data can be used to determine the time it takes the operating system to enqueue a message.

Page 53



4.3,1,1, DescrLotion of Data Recorded by Software Probes

Software probes are the mechanisms used to collect performance data. A software probe is

an Ada procedure which uses an assembly language routine to store information in an area

of the processing element's memory known as the debug log. Each entry in the debug log

contains three fields of information:

- label field

- parameter field

- tirnestamp field

The label field records a tag to the probe in the source code. Since numerous software

probes are to be imbedded in AFTA procedures and tasks, it is necessary to identify the

saved data with the probe which stored it. The tag in the label field uniquely identifies

which probe recorded the data for that debug log entry.

The parameter field is used to store a value of pertinent system information. The choice of

what data to store in this field depends on what aspect of system performance the probe is

measuring. For example, the overhead associated with the delivery of queued message

packets by the Network Element (via the send_queue procedure) depends on the number

of packets queued. Since this is an independent variable, it is useful to record the value in

the parameter field of the debug log entry. Likewise, some system overheads are a func-

tion of the minor frame number. Probes used to measure those overheads store the current

frame number in the parameter field.

The final data field in each debug log entry is the timestamp field. The value of the system

clock is automatically stored in this field each time the software probe is activated. The

system clock value is a 32-bit quantity and has a resolution of 1.28 _tsec per tick. The

clock wraps around to 0 after reaching its maximum value (this occurs after approximately

92 minutes).

4,$,1.2. Ex(t_ole of Software Probe Use

As an example of how the debug log entry fields are used to measure system performance,

consider a method to determine the length of time for the operating system to queue a mes-

sage for delivery. Software probes are inserted in an application task just prior to, and im-

mediately after, calling the queueing procedure. This is illustrated in Figure 22.

Page 54



while size < max_size loop

debug_log(16#1111#, size);

queue_message();

debug_log(16#1112#, size);
end loop;

Figure 22. Placement of Software Probes

The software probe is activated by the call to the Ada procedure debug_log. Two pa-

rameters are passed during the call to debug_log. The first parameter is a number that

will be stored in the label field of the debug log entry. For the first software probe shown

in Figure 22, the hexadecimal number 1111 is used as the label (or tag). The label field for

the second software probe (just after the queue_message procedure) contains 1112 hex.

The second data passed to the debug_log procedure is a variable whose value will be

stored in the parameter field of the debug log entry. When collecting performance data on

the time to queue a message, it is important to know the size of the message being en-

queued. This information can be stored in the debug log entry's parameter field by includ-

ing the variable "size" in the call to debug_log.

In addition, the value of the system clock at the time debug_log is executed in stored in

the timestamp field of the debug log entry. Two consecutive debug log entries for en-

queueing a 64-byte message would be similar to those given in Table 5.

label parameter timestamp

(size)

1111 64 1645338

1112 64 1645449

Table 5. Representative Use of Debug Log Data Fields

The data contained in these debug log entries is used to determine how long it took the

system to queue the message. Although the processing of the debug log data is discussed

more thoroughly below, a brief overview of the process follows in order to explain the use

of the data fields. First, the timestamp for the probe labeled 1111 is subtracted by the

Page 55



timestampfor theprobelabeled1112. Thisnumberis thenmultipliedby theresolutionof

theclock (1.28microsecondsperclock tick) to givethetimeneededto queuethemessage.

In addition,theoverheadof makingthecall to debug_log is alsosubtractedout. There-

sultof theseoperationsis thetimeit tookto enqueuethemessage.

4,_.2. Transfer of Data from the AFTA to the Host VAX

The software probes store debug log entries in the local memory of the AFTA processing

element. However, the programs written to analyze this data run on a VAX computer, so

the data must be transferred from the AFTA to the host VAX for processing. The AFTA

IO System Services are used to oversee the data's transfer via Ethernet to the host VAX.

An IO application task consisting of an Ethemet output IO request was created to perform

the transfer of debug log data from the AFTA to Ethernet. On the VAX end of the Ethemet

connection is a program which continuously polls the Ethernet port for the arrival of new

data. Once the data is read in, it is stored in a VAX file for off-line statistical analysis.

4.3.3. Data Analysis

At this point in the performance measurement process, raw performance data has been col-

lected and transferred to the host VAX. This raw data must be processed to obtain desired

and meaningful results. This processing occurs in two phases. First, the time interval

between two debug log entries (taking into account the clock resolution and the overhead of

making the calls to the debug log procedure) must be determined. Second, the sorting of

these time values (for example, by message size) and the performing of statistical functions

(such as determining the average time, maximum time, minimum time, standard deviation,

and counting the number of samples) is accomplished.

4,3,3.1, Determination of Time Interval

In determining the time interval between two debug log entries, the analysis program uses

the label field of the debug log entries to identify the data associated with each software

probe. The user supplies the analysis program with the labels for each pair of appropriate

software probes. For instance, in the queue message example, the pertinent labels are 1111

hex and 1112 hex. The analysis program searches through all the debug log entries stored

in the VAX file, and saves entries that have the given labels. These saved entries are then

paired, and their timestamp values are subtracted. This value gives the number of clock

ticks that occurred between the activation of the pair of software probes. To convert this

number to a time value, it is multiplied by the clock resolution, which is 1.28 _tsec per

clock tick. One final bit of processing is needed before determining the length of the time

Page 56



interval. Theoverheadof activatingthesoftwareprobe(thetimeit takesto makethe de-

bug_log procedurecall)needsto besubtractedfrom thetimeintervalvalue.

To determinetheoverheadfor softwareprobeactivation,anumberof debug_log proce-
durecalls weresequentiallyexecuted.As shownin Table6, therewasa22 gsectime de-

lay betweenthe activationof two softwareprobes. This implies that the overheadthat
shouldbe subtractedbetweenapair of consecutiveprobesis 22gsec. This is theoverhead

valuethat wouldbesubtractedfor thequeuemessageexamplebecausetheprobesarein

consecutivedebuglog entries. However,sometimesotherdebugentriesarelocatedin
betweenthetwo entriesthat areof interest. For example, supposewe want to measure

thelengthof timeit takesfor ataskto execute,andwithin thattaskis aqueuemessagecaU
thatwealsowantto measure.Thetaskmeasurementprobeswouldnot beconsecutiveen-

tries in the debuglog becausethequeuemessagemeasurementprobeswould be located

betweenthem. Sincetherearetwo nestedprobesbetweenthetaskprobes,theoverhead

associatedwith thequeuemessageprobesalsoneedsto besubtractedfrom thetimefor the
task. Therefore,thenumberof interveningprobesmustbecounted,sotheoverheadfor all

theseprobescanbetakeninto account.Hence, 22t.tsecshouldbesubtractedasadditional

overheadfor eachinterveningsoftwareprobeactivation.

# of de-

bug_log
calls

2

3

4

5

Avg Time

(_tsec)

22

43

66

87

110

131

Stand Dev

(ktsec)

2

2

Max Time

(ktsee)

25

51

69

94

112

138

Min Time

([tsee)

17

43

61

87

106

130

# Samples

177

177

177

177

177

177

Table 6. Overheads Associated with debug_log Procedure Calls

4.3.3.2. Statistical Analysis of Time Data

Once the overhead has been accounted for, the time interval between two debug log entries

is known. These values are saved in an array, and it is easy to determine the average time,

standard deviation, maximum time, minimum time, and number of samples in the array.

These results are displayed on the monitor and stored in a t-de.

The analysis program can also sort the data according to the contents of the parameter field

of the debug log entries. For the queue message example, the execution times are sorted

according to message size. For each message size, the average time, standard deviation,

Page 57



etc.aregivenaswell asoverallstatistics.As before,theresultsaredisplayedon themoni-

tor andstoredin adatafile for lateranalysis.

4.4. Performance Measurement Results

Using the methodology described above, empirical performance data for AFTA operating

system overheads were collected. This section summarizes the measurements.

Performance data for each of the operating system tasks are presented in the order in which

they occur during each minor frame (Figure 11).

4.4.1. System Configuration

Before giving performance measurement results, the AFTA configuration used during the

data collection is described. All performance measurements were taken on a prototype

AFTA Ada operating system running on a 20 MHz 68030-based Motorola MVME147S-1

Processing Element. Caches and compiler optimizations were turned on. The system used

the AFTA Brassboard Network Element.

Since many aspects of system performance are dependent upon the distribution of tasks,

the task list used for all these measurements, unless stated otherwise, is given below. The

user application task simply sent messages of varying length to itself, which it later read it-

self.

RG4 tasks (six)

fdir (local)

system_fdir

io_source_congruency_mgr

io_processing_task_rg4

io_application_task (user task)

application_task (user task)

RG3 tasks (one)

io_processing_task_rg3

RG2 tasks (one)

io_processing_task_rg2

RG1 tasks (one)

io_processing_task__rg 1

4.4.2. Interrupt Handler Overhead

The interrupt handler (IH) updates the clock time, sets the next interrupt time, and scoops

all queued messages. The IH code is in assembly, except for the scoop procedure which

is in Ada. The time to scoop messages dominates the IH overhead, and no measurements

have been taken of the assembly code, whose execution time is negligible. The perfor-

mance data for the scoop procedure is given in the following section.

Page 58



4.4.2.1. S¢ooo Message

The scoop procedure transfers message packets from a PE's receive queue in the Network

Element's dual-port RAM to the PE's local memory space where they are reassembled into

complete messages. The time to scoop messages is dependent on the number of packets to

be scooped, as shown in Table 7.

hum

pkts
(64

bytes)

avg
time

(l_sec)

std dev

(l_sec)

max

time

(_tsec)

min time

(_sec)

# sam-

ples

2 321 3 328 320 18

3 433 1 434 433 18

4 542 3 547 539 18

5 652 1 653 652

6 763

871

981

1091

1200

1310

1420

7

2

2

10

766

877

984

1097

1203

1315

1422
11

759
864

977

1089

1196

1308

141412

17

17

17

17

17

17

17

17

Table 7. Scoop Message Execution Time as a Function of Number of Packets

4.4.3. Rate Group Dispatcher (Part One) Overhead

The primary functions of the first part of the rate group dispatcher (RGD1) are to check for

task overruns and to schedule the IO dispatcher for execution. Overall, the execution time

for RGD1 varies as a function of the minor frame number, as shown in Table 8. The rea-

son for this variance is that different minor frames have a different number of rate groups

that have reached their RG boundaries. When a rate group reaches its boundary, all tasks

within that rate group should have completed their iterative cycle. RGD1 ensures that all

tasks that should have completed actually did, and the number of tasks to check depends on

the number of rate groups that have reached RG boundaries.

Page 59



minor
frame

RG
boundaries

avg
time

(_sec)

std dev

(_sec)

max
time

(_sec)

min time

(_sec)

#sam-

ples

0 4, 3, 2, 1 168 0 168 168 20

1 4 130 2 137 130 20

2 4,3 143 0 143 143 20

3 4 130 0 130 130 20

4 4, 3, 2 156 0 156 156 20

5 4 130 0 130 130 20

6 4, 3 143 2 150 143 19

7 4 130 0 130 130 19

Table 8. Overall Rate Group Dispatcher (Part One) Execution Time as a Function of

Minor Frame Number

Notice that RGD1 executes longest during minor frame 0. This is because all rate group

tasks have completed their iterative cycle at the completion of minor frame 7. Therefore,

RGD1 has to check for overruns of tasks in every rate group. RGD1 has a minimal execu-

tion time during minor frames 1, 3, 5, and 7 because during those frames it only needs to

check RG4 tasks for overruns.

The overall execution time for RGD1 can be broken down into three main segments: (1) the

time needed to record the congruent time value and to check for RGD (part two) overrun,

(2) the time to check for rate group task overruns, and (3) the time needed to set up the next

rate group interval and schedule the IO dispatcher.

4.4.3.1. Record Congruent Time Value. Check for RGD 2 Overrun

At the beginning of execution, RGD1 records the congruent time value and then verifies

that the second part of the rate group dispatcher (RGD2) did not overrun during the previ-

ous minor frame. The time to accomplish these duties, as seen in Table 9, is constant and

thus does not vary with the frame number or task distribution.

Table 9.

avg std dev max min time

time (_tsec) time (_sec)

(l_sec) (_sec)
21 0 21 21

# sam-

ples

158

RGD1 Update Congruent Time Value and Check for RGD2 Overrun Execution

Tune

Page 60



4.4.3.2. Check for RG Task Overruns

RGD 1 determines whether any of the tasks that were to complete their iterative cycle and

suspend themselves during the previous minor frame overran the frame boundary. The

time needed to accomplish this is a function of the number of RG tasks that were scheduled

to suspend themselves during the previous minor frame. This is shown in Table 10. This

segment of RGDI is the only one that does not have a constant execution time.

num RG
tasks

minor
frames

avg
time

(I.tsec)

std dev

(_tsec)

max

time

(_tsec)

min time

(_tsee)

sam-

ples

6 1, 3,5, 7 58 0 58 58 79

7 2,6 69 3 71 65 39
8 4 79 3 84 20

9 9O9O

77

900 20

Table 10. RGD1 Check for Rate Group Task Overruns Execution Time as a Function of

Number of Rate Group Tasks

4.4.3,3. Set Up Next RG Interval, Schedule I0 Dispatcher

Before finishing execution, RGD1 sets up the next rate group interval; this entails determin-

ing when the next interrupt should occur. RGD1 then schedules the IO dispatcher to exe-

cute next. These duties are done every minor frame, and the amount of time needed to do

them is constant for all minor frames. The execution times are summarized in Table 11.

avg
time

(I.tsec)
48

std dev

(_tsec)

3

max min time

time (_tsec)
(_tsec)

53 47

sam-

ples

158

Table 11. RGD1 Set Up RG Interval and Schedule IO Dispatcher Execution Time

4.4.4. I0 Dispatcher OOD) Overhead

IO performance data collection is incomplete because the AFTA IO System Services are not

completely implemented, and the sections that are implemented have not been optimized.

IO is application-specific, and as a result it is very difficult to make general statements

about IO performance. However, to provide an estimate of IO performance, some data

were collected using restricted IO. In particular, all IO was outbound-only and used

Ethernet to send out the data.

Page 61



TheIO dispatcher (IOD) consists of three main sections. First, it determines which IO re-

quests should be executed this frame and then starts their execution. Second, it waits for

the IO requests to finish execution. Finally, after waiting, IOD reads any incoming IO

data. Each of these activities is discussed in the following paragraphs.

IOD determines which IO requests should execute during the current minor frame by

checking the IO execution table, and it then starts the execution of each of these requests.

For outgoing IO requests using Ethernet, IOD must fin'st transfer the data to an area of

memory used for Ethernet transfers before starting the IO request. This transfer is done on

a byte-by-byte basis. The time required to transfer the data varies with the number of bytes

to be transferred. This transfer time was measured and is approximately 5 _tsec for each

byte sent out. This implies that IOD would spend 500 I.tsec transferring data for an IO re-

quest consisting of sending out 100 bytes of data.

After starting the execution of all IO requests, IOD waits while the execution takes place.

The amount of time spent waiting depends on how long it takes to execute the.IO request,

which is dependent on the hardware device executing the IO. The wait period is a constant

and should equal the longest amount of time needed to execute the IO requests for any mi-

nor frame. Since no data on IO execution time has been collected, the set IOD wait period

is cqrrently an arbitrarily large number.

IOD's last duty is to read all incoming IO data. No performance data was collected for this

because all IO was strictly outgoing IO.

4.4.5. Rate Group Dispatcher (Part Two) Overhead

The primary functions of the second part of the rate group dispatcher (RGD2) are to send

queued message packets and to schedule rate group tasks for execution. A summary of the

overall RGD2 execution times, sorted by minor frame number, is given in Table 12.

Page 62



minor
frame

RG bound-
aries

avg
time

(gsec)

std dev

(l_sec)

1165

max

time

( sec)

374

min time

(_sec)

# sam-

ples

0 4, 3, 2, 1 1454 409 2134 710 20
1 4 1190 406 1817 549 20

2 4, 3 1279 402 1905 730 20
3 4 1173 394 1830 629 20

4 4, 3, 2 1367 388 2036 841 20
4 636 191817

1929 196 4,3 1317 381 736
7 4 1197 378 1824 629 19

Table 12. Overall Rate Group Dispatcher (Part Two) Execution Time as a Function of

Minor Frame Number

As is evident from the large standard deviations in Table 12, RGD2 execution times do not

vary directly with the minor frame number. Unlike RGD1, which only varied as a function

of the number of tasks that suspended themselves during the previous minor frame, the de-

pendencies of RGD2 are more complicated. In particular, RGD2 performance is related to

the number of message packets that were enqueued during the previous minor frame.

Since the number of enqueued packets can differ for a given application from one iteration

to the next, it is not meaningful to examine RGD2 execution times as a function of only the

minor frame number.

It is more useful to break RGD2 into several segments and then examine each segment sep-

arately. The following five sections describe the five major segments of RGD2: update

congruent time value and check for RGD1 and IOD overruns; send queued message pack-

ets; update message packet queues; schedule rate group tasks; and increment minor frame

number and set up IO interval for the next frame.

4.4.5.1. Update Congruent Time Value. Check for RGD1 and IOD Overrun

At the beginning of each iteration cycle, RGD2 updates the congruent time value used by

each rate group and checks to see if either the rate group dispatcher (part one) task or the

IO dispatcher task exceeded its execution time bound. The time to accomplish these duties

is the same during each iteration of RGD2. A summary of the execution time data is given

in Table 13.

Page 63



Table13.

avg
time

(gsec)
40

std dev

(gsec)

max

time

(gsec)
46

min time # sam-

(gsec) pies

40 157

RGD2 Update Congruent Time Values and Check for RGD1 and IOD Overrun

4.4.5.2. Send Oueue

RGD2 calls the send_q_eue procedure once for each task that suspended itself during the

previous minor frame, send_queue transfers enqueued message packets from each PE's

local memory space to the Network Element where they are processed and delivered. The

execution time of each send_queue call is a function of the number of packets that were

queued by that task, as shown in Table 14. Therefore, the total amount of time RGD2

spends sending queued packets depends on the number of tasks that suspended themselves

during the previous minor frame and on the number of packets enqueued by each task.

It is important to note that the data in Table 14 was collected using only one Virtual Group.

Since only one PE was connected to the NE, no contention for NE service occurred.

Therefore, these numbers represent best case performance; if there were contention, the

send_queue execution times would increase.

pkts

sent per
task

avg
time

(gsec)

std dev

(gsec)

max

time

(gsec)

min time

(gsec)

# sam-

ples

Table 14.

0 5 3 10 2 1140

1 14 231 77 25678

182 2092 17112 22

3 301 14 322 283 22
4 417 7 440 409 21

5 535 10 552 528 21

6 657 12 684 647 21

7 11 797 758 21
8

770
890

1007

1125

9O9

1027

1146

8

9

10

877

990

1115

9

9

21

21

21

RGD2 Send Queue (Per Task) Execution Time as a Function of Number of

Packets

4.45.3. Update Oueue

RGD2 calls the update_queue procedure once for each task that suspended itself during

the previous minor frame. This procedure updates pointers used in each PE's receive

Page 64



queue,locatedin thedual-portRAM. Theexecutiontimeof eachupdate_queue proce-

dure call varies as a function of the number of receive_queue pointers which need to be up-

dated and is equal to the number of packets enqueued during the previous frame. This is

shown in Table 15. The total amount of time spent by RGD2 updating queues is a function

of the number of tasks that suspended themselves during the previous minor frame and the

number of packets enqueued by each task.

pkts
sent per

task

avg
time

(_tsec)

std dev

(_tsec)

94

max

time

(txsec)

min time

(_tsec)

100

# sam-

ples

93

0 16 3 24 11 879

1 28 3 31 24 195

2 36 1 37 36 17

3 42 1 43 42 16

4 51 3 56 48 16

5 56 2 61 55 16

6 66 3 69 61 16

7 74 0 74 74 15

8 81 3 87 80 16

9 86 1 87 86 16
10 16

Table 15. RGD2 Update Queue (Per Task) Execution Time as a Function of Number of

Packets

The data for send_queue and update_queue are linear, as shown by the graphical

representation of the performance data, which is given in Figure 23.

1200

lOOO

BOO

600

m 200

o r v

a - i - i - i - l

2 4 6 8 10

Number of Message Packets

Send_Queue

" I

12

Update_Queue

Figure 23. Graphical Representation of Send Queue and Update Queue Execution Time as

a Function of Number of Packets

Page 65



4.4.5.4. Schedule Rate Group_ Tasks

RGD2 schedules rate group tasks to run in the time remaining in the current frame. It does

this by calling a scheduling procedure for each rate group that reached its RG boundary

during the previous minor frame. Therefore, this scheduling procedure is called a maxi-

mum of four times by RGD2 (in minor frame 0). It is always called at least once during a

minor frame. The execution time of the scheduler is a function of the number of tasks that

need to be scheduled for a particular rate group. Table 16 summarizes the scheduler per-

formance data. To collect more data points for the time needed to schedule RG tasks, the

system configuration described at the beginning of this section was altered by adding more

application tasks.

num tasks

per Rate
Group

avg
time

(_sec)
55

85

std dev

(_sec)

max

time

(_sec)
59

90

min time

(_sec)

52

84

# sam-

pies

74

72

3 121 2 127 121 70

4 143 3 146 140 65

5 134 2 134 129140

1666 160 3

7 190 2 196

158

190

147

140

8 221 1 222 216 131

Table 16. RGD2 Schedule Rate Group Tasks Execution Time as a Function of Number of

Tasks Per Rate Group

4.4,5.5, Increment Frame Number. Set Up I0 Interval_for Next Frame

At the end of each RGD2 execution cycle, the minor frame number is incremented and the

IO interval is set up for the next minor frame. These activities take place just one time per

RGD2 execution. As seen in Table 17, the execution time to perform these duties is con-

stant and is negligible compared to the total RGD2 execution time.

Table 17.

avg
time

(_l,sec)

std dev

(_sec)

max

time

(l_sec)

min time

(_tsec)

# sam-

ples

9 3 16 8 157

RGD2 Increment Frame Number and Set IO Interval Execution Time

Page 66



4.4.5,6. RGD 2 Summary_

The overall RGD2 execution time has five constituent parts. Two of these are constant, and

they account for 49 t.tsec of RGD2 overhead. Of the other three constituents, two

(send_queue and update_queue) have execution times which are a function of the

number of enqueued message packets. The final constituent of RGD2 overhead is the time

needed to schedule rate group tasks; this is a function of the number of tasks to schedule.

4.4.6. Fault Detection, Identification, and Recovery (FDIR) Overhead

The FDIR overhead for all Virtual Groups (VGs) within AFTA is the time to execute the

Local FDIR task, except for the System VG, which executes the System FDIR task in ad-

dition to Local FDIR. Performance data for the System FDIR task are not presented be-

cause the task has not yet been fully implemented. Data for the execution times of the Local

FDIR task are given in Table 18. Local FDIR simply enqueues a one-packet message

which is delivered to the System FDIR task. Its execution time is constant, even with

faults present in the system.

avg
time

(_sec)

std dev

(btsec)

max

time

(gsec)

min time

(gsec)

# sam-

ples

84 2 90 84 210

Table 18. Local FDIR Execution Time

4.4.7. IO Source Congruency Manager (IOSC) Overhead

The IO Source Congruency Manager ensures that all members of a redundant VG receive a

copy of any input read by another member. The system configuration used to collect per-

formance data used a simplex VG for IO, so the IOSC execution time reported in Table 19

should be regarded as a "best case" execution time.

avg std dev max min time # sam-

time (gsec) time (I.tsec) pies

(_tsec) (gsec)

52 1 59 52 142

Table 19. Minimal IO Source Congruency Manager Execution Time

Page 67



4.4.$. IO Processing Task flOP] Overhead

The IO Processing task is responsible for ensuring that all members of a redundant VG end

up with a single input value. This involves some data smoothing or averaging. The per-

formance measurements summarized in Table 20 indicate a relatively large standard devia-

tion. This might be because there axe four instantiations of this task, one for each rate

group. The IOP code is not fully implemented, and the implementation will be strongly

dependent on the application.

avg
time

(msec)

std dev

(msec)

max

time

(msec)

min time

(msec)

sam-

ples

15 12 34 2 357

Table 20. Minimal IO Processing Task Execution Time

4.4.9. Other Overheads

There are several system overheads that are not explicitly shown in the minor frame

overview given in Figure 11. These include the queue_message overhead, the re-

trieve_message overhead, and the time needed to context switch between tasks.

Performance data for these three overheads are given in the following sections.

4,4,9,1. Oueue Message

The queue_message procedure call is used by a task when sending a message. This

procedure decomposes the message into packets and then enqueues these packets in the

PE's local memory space for later transfer to the NE. As indicated in Table 21, the amount

of time needed to enqueue a message is a function of the length of the message.

Page68



msg size
(bytes)

msg
size

(packet
s)

avg
time

( sec)

std dev

(_tsec)

max

time

(_tsec)

min time

( sec)

# sam-

ples

0 1 84 2 90 84 20

100 2 136 3 140 134 19

200 221

272

358

410

497

300 3

2

2

400

222

278

359

415

502
5OO

221

271
358

409

496

4 19

19

18

18

19600 10

700 12 546 1 552 546 19

800 13 634 2 641 633 19
900 15 718 3 722 715 19

7717781000 16 771 2 19

Table 21. Queue Message Execution Time as a Function of Message Size

4,4.9,2, Retrieve Message

The retrieve_message procedure is used by tasks to reassemble delivered packets

into complete messages. As with queuemessage, the time to retrieve a message is de-

pendent upon the size of the message. This is shown in Table 22. Notice that it takes

longer to retrieve a message of a given length than to enqueue it. When packets are deliv-

ered by the NE, syndrome information indicating whether any redundant copies of the

packet differed from the majority vote is attached to each packet. While retrieving a mes-

sage, some of this syndrome information is processed, and that accounts for the increased

execution time.

msg size msg avg std dev max min time # sam-

(bytes) size time (_sec) time (_sec) pies
(packet (_sec) (_sec)

s)
0 1 121 2 127 121 19

100 2 193 3 196 190 19

200 4 312 3 315 308 19

300 5 379 3 385 377 19

400 7 499 3 504 496 19

500 8 567 3 571 565 19

600 10 685 3 690 683 19

700 12 752 2 753 746 19

800 13 871 2 877 871 19

900 15 991 3 996 990 18

1000 16 1058 1059 1058 18

Table 22. Retrieve Message Execution Time as a Function of Message Size

Page 69



Figure 24 depictsa graphicalrepresentationof the datacontainedin Table 21 (Queue

Message)andTable22(RetrieveMessage).

A

!
O

E

0
=
=3
0
0
X

la

1_0-
0

1000 "

soo;

_0,

_0'

200.

0

0
| I

10 20

Number of Message Packets

Relrieve_Msg

Queue_Msg

Figure 24. Graphical Representation of Queue Message and Retrieve Message Execution

Time as a Function of Number of Packets

4.4.9.3. Context Switch Overhead

The amount of time needed to context switch between two tasks was measured, and the re-

suits are summarized in Table 23. These measurements were collected by creating a system

configuration where two tasks in the same rate group were given consecutive priorities.

This ensured that one task would execute immediately prior to the second one. Software

probes were placed just before the iterative completion point of the first tasks and just after

the iterative completion point of the second task. The context switch time was determined

by subtracting the two timestamp values,.

avg
time

(_tsec)

std dev

(_tsec)

max

time

(_tsec)

rain time

(llsec)

sam-

ples

19 2 24 18 26

Table 23. Context Switch Execution Time

4.4.10. Performance Data Summary

The overheads in this section were presented according to their occurrence during a minor

frame. However, the system overheads can be grouped according to their purpose. Using

this scheme, four major categories exist: communication overheads, scheduling overheads,

Page 70



IO overheads,andfault detectionoverheads.Thetasks/proceduresassociatedwith eachof

thesefour groupsarelistedbelow.
Communication Overheads

IH (scoop message)

RGD2 (send_queue and update_queue)

Queue Message (calledby applicationtask)

Retrieve Message (calledby applicationtask)

SchedulingOverheads

RGDI

RGD2 (excludingsend_queue and updat e_queue)

Context Switching

Input/Output

IOD

IOSC

lOP

Fault Detection

FDIR

For the system configuration used in this section, the communication overheads dominate

the total overhead. On average, the application task sends five packets per minor frame;

therefore, an average of six packets are processed per minor frame (including the one-

packet FDIR message). The OS communication overheads per minor frame include

scoop (763 I.tsec), send_queue (637 _tsec), and update_queue (162 _tsec). The

total communication overhead is 1562 _tsec. The total OS overhead, excluding IO, is 2199

t.tsec (average RGD1 = 141 _tsec, average RGD2 = 1268 _sec, local FDIR = 84 _tsec).

Therefore, the three communication procedures account for 71.0% of the total overhead.

Note that the queuemessage and retrieve, message overheads aren't counted in

the communication overhead. This is because they are system procedures which are called

by the application tasks. Therefore, the overhead for queueing and retrieving messages is

billed to the task's execution time.

The overheads associated with scheduling and fault detection are rather low compared with

those associated with communication. Scheduling activities take, on average, 553 _tsec per

minor frame, which is 25.1% of the total OS overhead. The local FDIR task takes just 84

_tsec per minor frame, or 3.8% of the total. Table 24 summarizes the percentage of over-

head (excluding IO) due to communication, scheduling and fault detection, for an average

minor frame. Note that the data in Table 24 represent values averaged over eight minor

frames; the overhead can vary widely from minor frame to minor frame.

Page 71



Overhead

Category

Communication

Schedulin_
Fault Detection

Average
Overhead

(_sec)

% of Total
Overhead

(excluding
IO)

1562 71.0%

553

84

25.1%

3.8 %

Table 24. OS Overhead Due to Communication, Scheduling and Fauk Detection (Average

Values for a Minor Frame)

The significance of the IO overhead is highly dependent on the amount and type of IO per-

formed. The important contribution of this effort concerning IO performance measurement

is the development of a methodology which can be used to continuously evaluate IO per-

formance as development progresses.

The overall AFTA OS overhead (excluding IO) is 2199 t.tsec per minor frame, on average.

Thus, 22% of the 10 msec minor frame is consumed by operating system overhead. This

compares favorably to the Software Implemented Fault Tolerance (SIFT) computer which

requires 64.3% OS overhead [Pal85]. The primary source of SIFT overhead is due to

voting and data consistency functions. In AFTA, the voting and data consistency functions

are considered part of the communication overhead. Therefore, as with SIFT, voting and

data consistency functions can also be considered a primary source of overhead for AFTA.

However, AFTA uses the hardware-based Network Element to reduce the total overhead.

4.5. Detailed OS Overhead Model

One important use of the performance data presented in the previous section is its incorpo-

ration into a model which can estimate the operating system (OS) overhead under various

configurations and workloads. Using the empirical performance data summarized above,

this section presents a detailed description of the OS overhead model, illustrates the use of

the model with a given system configuration and workload, and compares predicted over-

heads to measured overheads.

4.5.1. OS Overhead Model with Empirical Data

This section gives a detailed description of the AFTA operating system overhead model,

based on the empirical performance data presented above. The overhead model will be de-

scribed according to the occurrence of each OS task in the minor flame (Figure 11).

The amount of overhead per minor frame is the sum of the execution times for each of the

following operating system tasks: interrupt handler (IH), rate group dispatcher (RGD), IO

Page 72



dispatcher (IOD), Fault Detection Identification and Recovery (FDIR), IO Source

CongruencyManager(IOSC),andIO processing(IOP). Thisoverheadis representedby

the following equation:

OH = IH1 + RGD1 + IOD + IH2 + RGD2 + FDIR + IOSC + 10P

A detailed description of each of these eight overheads follows.

45.1.1. Interrupt Handler (11-11) Overhead

The overhead associated with the first interrupt handler (IH1) is given by the following

general equation:

IH1 = (time to update clock) + (time to schedule next interrupt) +

(time to scoop messages)

Updating the clock and scheduling the next interrupt are executed in assembly language

routines and therefore could not be directly measured using the Ada-based software probes.

However, the IH overhead is overwhelmingly dominated by the time needed to scoop mes-

sages, so the time needed to update the clock and schedule the next interrupt is negligible

and will be ignored.

The time to scoop message packets is a function of the number of packets that arrived in

the processor's receive queue since the last time a scoop was executed. The data in Table 7

indicate that the relationship between the scoop time and the number of packets is linear.

As a result, the overhead associated with the interrupt handler can be given as below:

IH1 = 110 * numberof_packets + 103 (l,tsec)

45.1.2. Rate Group Dis_oatcher - Part One (RGD 1) Overhead

The amount of time needed to execute the first part of the rate group dispatcher (RGD1) can

be summarized with the following general equation:

RGD1 = (time to update congruent time) + (time to check for RGD2 overrun) +

(time to check for task overruns) + (time to set up next RG interval) +

(time to schedule IOD)

With the exception of checking for task overruns, all the components of the rate group dis-

patcher (part one) are constant. Table 9 and Table 11 quantify this total constant overhead

as 69 I,tsec. The time needed to check for task overruns varies with the number of tasks

that completed their iterative cycle during the previous minor frame. Table 10 shows that

Page 73



this overheadis approximately10_tsecpertask. Therefore,thetotal overheadassociated

with RGD1canbedescribedby thefollowing:
RGD1 = 10 * number_of suspended_tasks + 69 (psec)

4.5.1.3. I0 Dis_Datcher (IOD _ Overhead

The general overhead associated with the I0 dispatcher task is given below:

IOD = (time to increment frame counter) + (time to start fOR execution)+

(time to wait for I0 to complete) + (time to read input data)

As explained above, IO performance measures were limited to outgoing IO data. This

makes it very difficult to explore the constituent IOD overheads in much detail. The time to

increment the frame counter is constant and is negligible (one 'add' statement in Ada). The

other constant is the time to wait for IO to complete. This is simply a busy-wait of a dura-

tion chosen by the application programmer to ensure that any outward-bound IO is finished

before any attempt is made to read incoming IO data. Though the wait is constant for a

given system configuration, it can vary widely depending on the application and type of IO

performed for the given configuration.

The two remaining constituents of the IOD overhead are variable and depend on the type

and amount of IO activity to be performed during a given minor frame. The time to start

the execution of IO Requests depends on the number of IO requests scheduled to run this

minor frame that have outgoing data, and it also depends on how much data each IO re-

quest is sending out. As stated above, the time needed to start IOR execution is approxi-

mately 5 I_sec per outgoing byte of IO data. Finally, the time to read input data obviously

depends on the number of IO requests that have incoming data and on the amount of data

coming in. No performance measurements were taken using incoming IO data.

4.5.1.4. Interrupt Handler (IH 2) Overhead

The overhead equation associated with the second interrupt handler (IH2) is the same as

that given for IH 1 and is repeated below:

IH2 = 110 * number_of_packets + 103 (gsec)

Even though both instances of the interrupt handler are modeled by the same equation, in

general the overheads associated with IH 1 and IH2 will be different. This is because the

time to scoop messages will vary with the number of packets present in the receive queue

for the processor. Typically, the time interval between the occurrence of IH1 and IH2 is

less than the time duration from IH2 to the next occurrence of IH1. This implies that more

Page 74



packetshavehadanopportunityto arrivein thereceivequeueduringtheintervalfrom IH2

to IH1, andthereforethetime to scoopmessagesshouldgenerallybelonger for IH1 than
IH2.

4.5.1.5. Rate Group Dispatcher - Part Two (RGD 2} Overhead

The execution time for the second part of the rate group dispatcher (RGD2) can be generally

described as follows:

RGD2 = (time to update congruent time) + (time to check for RGD1 overrun) +

(time to check for IOD overrun) + (time to send queued messages) +

(time to update queues) + (time to schedule RG tasks) +

(time to increment frame count) + (time to set up I0 interval)

All but three of the RGD2 constituents listed above have constant execution times. The

time to update the congruent time value, check for RGD1 and IOD overrun, increment

frame count, and set up IO interval is constant and equals 49 I.tsec. The three variable

constituents of RGD2 axe the time to send queued messages, the time to update queues, and

the time to schedule RG tasks.

The time to send queued messages is a function of the number of tasks that suspended

themselves during the previous minor frame and the number of message packets that each

task had enqueued since the last time its queue was sent. For each task, the time to send

the queued packets (Table 14) is given by:

Send_Queue (per task) = 115 * numberof_packets - 31 (l_sec)

The time to update a task's queue is a function of the number of packets received and the

number of packets read since the last time the queue was updated. Table 15 yields the fol-

lowing equation:

Update_Queue (per task) = 8 * number_of_packets + 19 (psec)

Since the time to send queued messages and update the message queues both vary with the

number of packets enqueued, they can be combined into the following single equation:

Send_and_UpdateQueue (per task) = 123 * numberof_packets - 12 (psec)

The time to schedule the rate group (RG) tasks is a function of the number of RG tasks that

are to be scheduled this minor frame. The data in Table 16 results in the following equa-

tion:

Schedule_Tasks (per rate group) = 26 * number_of_rg_tasks + 15 (l.tsec)

Page 75



Thethreevariableconstituentsof RGD2canberepresentedby two equations.Including

the constantconstituent,the generalexpressionof the RGD2overheadcannow be ex-

pressedas:

RGD2 = (time to send and update queues) + (time to schedule tasks) + (a constant)

Using equations (1) and (2), the detailed equation for the total RGD2 overhead is given by:

nura_tsk nura_rg tsk

RGD2 =,_, [(123 * num_pkti) - 121 +Z, I(26 * num_rg_tskj) + 151 + 49 (psec)

i =1 j =1

where,

num_tsk is the number of tasks with messages to send that completed their it-
erative cycle during the previous minor flame.

num_pkt is the number of packets a task has enqueued since its last

send_queue call.

num_rg is the number of rate groups that begin a new frame boundary in the
current minor frame.

num_rg_tsk is the number of tasks in a given rate group.

It is interesting to note that the RGD2 overhead is much more sensitive to the number of

packets to send than to the number of tasks to schedule. There is approximately five times

as much additional RGD2 overhead for each additional message packet than that for each

additional task.

4.5.1.6. Fault Detection Identification and Recover_ (FDIR ) Overhead

The overhead of running the Local FDIR task is the same as that for enqueueing a one-

packet message, which is all the Local FDIR task does.

FDIR = (time to enqueue message to System FDIR task)

The Local FDIR task has a constant execution time, as shown in Table 18. Therefore, the

overhead for FDIR can be expressed as:

FDIR = 84 (psec)

The overhead for different types of fault recovery strategies (e.g., degrade the system or

virtual group, bring up a hot spare) was not measured and is not included in the overhead

summary. These times must be eventually included into the analysis to allow the user to

estimate the performance overhead for handling faults.

Page 76



4.5.1.7. I0 Source Congruency Manager (IOSC} Overhead

The IO Source Congruency Manager (IOSC) ensures all members of a redundant Virtual

Group receive a copy of any input read by another member. The overhead associated with

the IOSC task is given below:

IOSC = (time to exchange input data among VG members)

The data for IOSC were collected using a simplex VG for IO. Therefore, the data repre-

sents a best case value since the IO data did not need to be exchanged among members of a

redundant VG. The minimal overhead for IOSC is given as:

IOSC = 52 (l_ec)

4.5,1,8. I0 Processing Task (IOP _ Overhead

The IO Processing (IOP) task is responsible for ensuring that all members of a VG per-

forming redundant IO end up with a single input value. This usually involves some data

smoothing or averaging. For instance, the average of three sensor values could be used as

the single input value. This processing or smoothing of the input data is specific to the

application, and can vary widely as far as execution time is concerned. The general IOP

overhead is given below:

10P = (time to process input data)

The lOP task is not fully implemented, and the implementation will be strongly dependent

on the application. Therefore, the data for IOP execution time given in Table 20 represent

minimum execution times for IOP. Using these data, the minimal IOP overhead is:

lOP = 15 (I.tsec)

4,5.1.9. Total QS Overhead

The total OS overhead for a given minor frame, excluding IO, is given by:

OH = IH1 + RGD1 + IH2 + RGD2 + FDIR

where,

IH1 =

RGD1

IH2 =

num_tsk

RGD2=Z
i=l

110 * number_of_packets + 103

= 10 * number of suspended_tasks + 69

110 * number_of_packets + 103

num_rg__tsk

[(123 * num_pkti) - 12] +]_ [(26 * num_rg_tskj) + 15] + 49

j=l

Page 77



FDIR = 84

By combiningbothIH overheadsinto oneandmergingall constants,theoverallOSover-

head(excludingIO overhead)for a givenminorframebecomes:

OH = (110 * num_pkt_scooped) + (10 * num_tsk) +

num_tsk num_r g_tsk

z_, I(123 * num_pkti) - 121 + v_ [(26 * num_rg_tskj) + 151 + 305 (_ec)

i =1 j =1

where,

num..pkt_scooped

num tsk

num..pkt

num_rg

num_rg_tsk

is the total number of packets scooped during the minor
frame.

is the number of tasks with messages to send that completed
their iterative cycle during the previous minor frame.

is the number of packets a task has enqueued since its last
send_queue call.

is the number of rate groups that begin a new frame boundary
in the current minor flame.

is the number of tasks in a given rate group.

4.5.2. Example of Overhead Model Use

To illustrate the use of the detailed OS overhead model presented above, an example system

configuration is created, the system parameters are used as input to the overhead model in

order to predict the OS overheads, and the predicted overheads are compared with empiri-

cally measured overheads. This section also illustrates several other ways to use the OS

overhead model.

4.5.2.1. Descriotion of Example System Configuration

For our example, the AFTA is configured with three user application tasks. The first one is

an RG4 task that sends and retrieves a 3-packet message during each iteration. The second

application task is an RG3 task that sends and retrieves a 6-packet message during each it-

eration. The third application task is an RG1 task that sends and retrieves a 2-packet mes-

sage during each iteration. A listing of all schedulable tasks, sorted by rate group, is given

below:

Page 78



RG4 ta_k_ (six)

fdir (local)

system_fdir

io_source_congruency_mgr

io_processing_task_rg4

io application_task (user task)

application task 1 (user task)

RG3 tasks (two)

io_processing_task3g3

application_task _2 (user task)

RG2 tasks (one)

io_processing_task_rg2

RG1 tasks (two)

io_processing_task_rg 1

application_task _3 (user task)

4.5.2.2. Predicted Overheads

The OS overheads vary as function of several parameters. These parameters include the

total number of message packets scooped, the number of tasks that completed their iterative

cycle during the previous minor flame, the number of packets sent by each task during the

previous frame, the number of rate groups that reached a frame boundary during the previ-

ous minor flame, and the number of schedulable tasks for each of the rate groups which are

at a flame boundary. Based on the system configuration given above, the values for each

of these parameters during each minor frame are given in Table 25.

Page 79



minor
flame

number

0

hum

pkts
scooped

12

hum

task

compl

11

num pkts
per task

3 (appkl),
6 (appL2),
2(appl_3),

1 (fdir)

num RG
at frame

bound-

ary
RG4,
RG3,
RG2,
RG1

aura

tasks per
RG

6 (RG4),
2 (RG3),
1 (RG2),
2 (RG1)

1 4 6 3 (appl_ 1), RG4 6 (RG4)
1 (fdir)

2 10 8 3 (appl_l), RG4, 6 (RG4),
6 (appl_2), RG3 2 (RG3)

1 (fdir)

3 4 6 3 (appl_ 1), RG4 6 (RG4)
1 (fdir)

4 10 9 3 (appl_l), RG4, 6 (RG4),
6 (appL2), RG3, 2 (RG3),

1 (fdir) RG2 1 (RG2)

5 4 6 3 (appL1), RG4 6 (RG4)
1 (fdir)

6 10 8 3 (appl_l), RG4, 6 (RG4),
6 (appl_2), RG3 2 (RG3)

1 (fdir)

7 4 6 3 (appl_l), RG4 6 (RG4)
1 (fdir)

Table 25. System Parameters for Each Minor Frame

Using the parameter values given in Table 25 and the OS overhead equations, the OS over-

head for each minor frame can be predicted. These predictions are presented below:

Fr_rn¢ O

In 1 = (110 * 12) + 103 = 1423 _tsec

RGD1 = (10 * 11) + 69 = 179 lasec

RGD2 = [(123 * 3)- 12] + [(123 * 6) - 12] + [(123 * 2) - 12] + [(123 * 1) - 12] +

[(26 * 6) +15] + [(26* 2) + 15] + [(26 * 1) +15] + [(26 * 2) + 15] + 49

= 1823 l.tsec

FDIR = 84 l.tsec

TOTAL = 3509 _tsec (35.1% of minor frame)

Frames 1, 3, 5, and 7

IH 1 = (110 * 4) + 103 = 543 _tsec

RGD1 = (10 * 6) + 69 = 129 ktsec

Page 80



RGD2= [(123 * 3) - 12]+ [(123* 1)- 12]+ [(26 * 6) + 15]+ 49 = 688 ktsec

FDIR = 84ktsec

TOTAL = 1444l.tsec(14.4%of eachminorframe)

Frames 2 and 6

IH1 = (110 * 10) + 103 = 1203 I.tsec

RGD1 = (10 * 8) + 69 = 149 ktsec

RGD2 = [(123 * 3) - 12] + [(123 * 6) - 12] + [(123 * 1) - 12] +

[(26 * 6) + 15] + [(26 * 2) + 15] + 49 = 1481 _tsec

FDIR = 84 I.tsec

TOTAL = 2917 _tsec (29.2% of each minor frame)

Frame 4

IH1 = (1

RGD1 =

RGD2 =

10 * 10) + 103 = 1203 I.tsec

(10 * 9) + 69 = 159 I.tsec

[(123 * 3) - 12] + [(123 * 6) - 12] + [(123 * 1) - 12] +

[(26 * 6) + 15] + [(26 * 2) + 15] + [(26 * 1) + 15] + 49 = 1522 ktsec

FDIR = 84 _sec

TOTAL = 2995 I.tsec (30.0% of minor frame)

Note that IO overheads are not considered in this example. Also, all the overhead for

scooping messages is assumed to occur in IH1. This is because the system was config-

ured using only a single VG. Since all messages are sent from and received by the same

VG, all message packets will be scooped at the beginning of each minor frame, during IH1.

4.5,2,3, Comparison Of Predicted and Actual Overheads

To determine the accuracy of the OS overhead model, empirical performance data were

collected using the system configuration described above. A comparison of the overheads

predicted by the model and the observed overheads is given in Table 26. Note that the

overheads are the average values for a minor frame; individual overheads varied from mi-

nor frame to minor frame.

Page 81



over- predicted measured
head time time difference

(_tsec) (_tsec)

901 870 + 3.5 %

144 144 0.0 %

- 17.0 %

IH1

RGD1

RGD2
FDIR

TOTAL

1132
84

2264

1364

84

2462

Table 26. Comparison of Predicted and Measured Overheads

(Average Values for a Minor Frame)

Table 26 shows that the overhead model is accurate for the IH1, RGD1, and FDIR over-

heads. However, the predicted RGD2 overhead is 17.0% less than the observed overhead.

The RGD2 error caused the total predicted overhead to be 8% less than the total measured

overhead (excluding IO).

There are several causes for the inaccuracy of the RGD2 model. The primary cause is the

model does not account for the time consumed by send_queue and update_queue

when a task has no message packets to send. The overhead of making the send_queue

call for tasks with no message packets is 5 l.tsec per task (Table 14). The corresponding

overhead for update_queue is 16 _tsec per task (Table 15). Therefore, 21 Issec is spent

for each task that doesn't have any message packets to send. If a 0 is inserted into

Equation 1 for the number of packets, the equation results in a -12 _tsec overhead to

send_and_update for each task, instead of the correct 21 IJ,sec value. Equation 1 is a least

squares line approximation to the data contained in Table 14 and Table 15. The approxi-

mation is very accurate except for the case when the number of packets equals zero. The

model currently only considers sendand_update overheads for tasks that have message

packets to send. To be more accurate, it should account for the overhead for tasks that

have no packets.

To see the effect of this on the RGD2 overhead, consider minor frame 1. The model pre-

dicts an RGD2 overhead of 640 _tsec, versus the observed overhead of 804 I.tsec (25.6%

error). If the send_and_update overhead for the four tasks in that minor frame which had

no messages is included, the predicted RGD2 overhead becomes 724 jasec, and the RGD2

error is reduced to 10.0%. This reduction in the RGD2 error can be achieved by using the

following modified send_and_update queue equation:

Page82



Send_and_Update_Queue (per task)

= 123 * number_of_packets - 12 (p.sec), if task has messagepackets in queue

= 21 (psec), if task has no enqueuedmessagepackets

Another cause for the RGD2 overhead error is the inaccuracy of the least square line used to

predict the time to schedule RG tasks. The time predicted by this equation can be as much

as 22% in error. For better accuracy, the time to schedule RG tasks should be determined

by a second- or third-order polynomial, instead of a linear approximation. Figure 25 is a

graphical comparison of the measured overhead associated with scheduling tasks with the

least square line approximation of that data.

_,. 20O

o

1O0

o

k-

0

Least Sq Line

Time to Sch_lule

• i • l . i . | • a

2 4 6 8 10

Number of RG Tasks

Figure 25. Comparison of Time to Schedule Tasks (Measured) with Least Square Line

Approximation

The RGD2 overhead is much more susceptible to inaccuracies in the model than the other

overheads because the RGD2 code contains several nested loops that can cause small errors

to quickly multiply into significant ones. For example, sendqueue and up-

dat e_queue are called once each for every task that completed its iterative cycle during

the previous minor frame. For the configuration given in this section, send_queue and

update_queue are called 11 times each during minor frame 0. Any error in the pre-

dicted overheads for send_queue and updatequeue will be multiplied by 11; thus, a

small error may quickly become a significant one.

4.5.2.4. Other Use_ q fOS Overhead Model

In addition to its use in predicting overhead for a given system configuration, the OS over-

head model can also be used to predict bounds on OS performance. For example, the

model can be used to determine the minimum amount of OS overhead. A minimal configu-

ration would consist of the following system tasks: Local FDIR (RG4), IOSC (RG4), IOP

Page 83



(RG4), IOP (RG3), lOP (RG2), lOP (RG1). OneRG1 applicationtask which did not

sendanymessageswould alsobepresent.The OSoverheadmodelpredictstheaverage

total OSoverheadperminor frame(excludingIO) for this minimumconfigurationto be
698I.tsec(7%of minor frame).

Anotherexampleof usingtheOSoverheadmodelis to determinetheamountof message

traffic which saturatesthesystem,resultingin anOSoverheadof 100%.Usingthesystem
configurationdescribedabove,theoverheadmodelpredictsthatthetotalOSoverheadwill

exceed100%for minor frame0 wheneachof thethreeapplicationtaskssends19message

packetsapieceduringeachRG frame.

Similarly, the modelcanbeusedto predict thenumberof taskswhich will saturatethe

system. Considerthe systemconfigurationdescribedabovewith eachapplication task
sendingonemessagepacketperRG frame. According to the overheadmodel,anaddi-

tional 59 RG4tasks(eachtask sendsonemessagepacketper frame)canbeaddedto the

systembeforethetotalOSoverheadexceeds100%of aminorframe.

Page84



5. POSIX Study

5.1. Objective and Approach

The overall objective of this task was to extend AFTA's open system characteristics to in-

clude its operating system and software. To achieve this objective, the AFTA Network

Element was interfaced to a standard operating system, which was then hosted on a

quadruply redundant AFTA. A POSIX-compliant operating system was selected for this

demonstration. The utility of the resulting system was demonstrated by rehosting and exe-

curing an Army flight-critical application (Dynapath Terrain-Following / Terrain Avoidance)

on the AFTA.

5.2. Overview of Progress

Several POSIX-compliant kernels were evaluated via vendor presentations and literature

surveys. These kernels included LynxOS, Quantum QNX, RTMX Uniflex, and HP-RT.

Because it is currently a market leader and compatible with the 68030 processors currently

in use in the AFTA, LynxOS was selected for detailed evaluation and demonstration.

LynxOS was purchased and installed on a nonredundant simplex MVME147 68030-based

workstation. (Because of the extremely rapid pace at which new processors and kernels are

being introduced, this decision should be re-evaluated at appropriate intervals.)

The AFTA NE was installed into the simplex LynxOS environment and tested via the self-

test code developed under the earlier AFTA detailed design phase. LynxOS / UNIX-com-

patible device drivers were written to allow application programs to access the NE, and a

simple Application Programmer Interface was implemented to allow application programs

to perform interchannel exchanges and synchronization. "Dynapath," a terrain-following /

terrain-avoidance helicopter trajectory generation application developed by NASA Ames,

was acquired from the Army and demonstrated in real-time on this nonredundant worksta-

tion environment, with interchannel exchanges being performed by the AFTA NE. The NE

was operated in "fiber optic loopback mode," in which the single NE's optical output was

connected to its inputs to simulate being connected to four other FCRs.

Subsequently, LynxOS was installed in the quadruply redundant target environment of the

AFTA. This environment consists of four FCRs, each containing one NE and one or more

68030 PEs. The NE interface device drivers and Dynapath were ported to this environment

and demonstrated. Limited fault injections (e.g., channel resets) were performed to

demonstrate fault tolerant behavior.

Page 85



Figure26.GenericLayeredView of AFTA

5.3. Generic AFTA Virtual Architecture

A generic layered view of the AFTA is shown in Figure 26. Multiple COTS Processing

Elements (PEs) are formed into synchronous Virtual Groups having redundancy of one,

three, or four. Figure 26 shows a quadruplex and triplex VG. Each VG executes different

application software and accesses the fault tolerant-related services, if desired, via an

Application Programmer Interface (API). The API and application tasks reside within the

context of a COTS operating system. Fault Detection, Identification, and Recovery task

also resides in the OS as a separate task, and detects and identifies faulty components and

Page 86



performsrecoveryactionsappropriateto theapplicationandmissionphase.The API inter-

acts with the application software on the one hand and the NE interface software on the

other hand, to provide the Byzantine Resilient Virtual Circuit Abstraction for the application

software.

5.4. POSIX Study Virtual Architecture

The generic abstract architecture above was instantiated as shown in Figure 27 for the

POSIX study. The Dynapath application program invokes the "exch0" primitive to perform

source congruency and voting on input and output data, respectively. The exch0 primitive

also synchronizes the multiple redundant copies of Dynapath. The exch0 primitive accesses

the NE via a UNIX device driver. FDIR was not implemented for this demonstration.

COTS

To / From Other VGs

Element
Im(Byzantinell I
am Resilient
! vi.uat an

Figure 27. Layered View of AFTA for POSIX Study

5.5. POSIX Study Physical Architecture

In the physical architecture, the host workstation executes the LynxOS "self-hosted" op-

erating system and development environment. This environment contains the editors,

compilers, linkers, file systems, and download facilities required for code development.

Page 87



TheNetworkElementwasinstalledinto thisenvironmentfor preliminarydevelopmentand

testing(Figure28),butwassubsequentlyremovedto thetargetenvironment.

Ethernet

SCSI Disk/Tape

Console

I I

AFTA
Network
Element

VMEbus

Figure 28. Simplex Self-Hosted Development Environment

Fiber
Optic

Inter-FCR
Links

Etbemet

SCSI Disk/Tape

Console

MVME147

_i_:i_i_i_i_:_i!?_!!!!!_!i!i_:!:_ii_:_i_i_i_ii_t_i.

il1
============================================

VMEbus

Etbernet

I Console

MVME147 [

P::: b:_nxOS, i_::#:iiiilI

:_ Device Driver _1L ...............................................................3
!

I I
VMEbus

AFTA
Network
Element Fiber

Optic
Inter-FCR

Links

Figure 29. Simplex Target Environment and Development Environment

Page 88



In thenextstepof thedevelopment,a targetLynxOS wasobtainedandportedto atarget

environmentwhichdid notcontainadiskor tape.TheNetworkElementwasmovedto this
environmentto compriseacompletesingleFCRof anAFTA (Figure29).All NE interface

codewasthenportedto thisenvironment.All communication(downloading,file services,

etc.)amongthedevelopmentenvironment,targetenvironment,andothercomputersin the
laboratoryoccursoverEthemet.

At this stageof thedevelopmentit wasnoticedthattherewasverylittle differencein opera-

tion betweenthe self-hostedandtargetLynxOS environments.Application andsystem

codewhichwasdevelopedon theself-hostedworkstationenvironmentin generalexecutes

withoutmodificationon thetargetenvironment.

Page89



Ethemct

I $C$I Disk2Tape H MVME147

I
/ t _!_ _

I
VMEbus

::::::::::::::::::::::::::

_i_!zi_t#,xos iiliiiii

/ £.._'_v_l

L
VMEb_

I Etbcme_

I _"_ I

'-
[

VMgbus

I Ethemex

I MV_I47 I

[

i VMEbm

I MVME147 I

  iii !!iiiiiiii::%  ::%iiiii l
I _ _I
I t _= _'_ _I

I
VMEb_

AFTA

Network

Elmer 0pt_c

AFTA

Network
Element

AFTA

Ne.'wofl; _c
Elcme_[

Nee,co&

Elmncnt

I

Figure 30. Redundant Target Environment and Development Environment

Subsequently, the LynxOS target operating system, the NE interface code, and the applica-

tion code were ported to all four processors in the quadruply redundant AFTA (Figure 30).

Page 90



5.6. POSIX Study Scheduling

Under the POSIX study the rate group task scheduling model developed under previous

AFTA tasks was extended to remove certain limitations. The task taxonomy used in the

context of this study partitions tasks according to their trigger mechanism and execution

time. Tasks may be either "time triggered" or "event triggered." Time triggered tasks may

be either periodically triggered (e.g., every hour) or sporadically triggered (e.g., at five o'-

clock today). Event triggered tasks may be triggered by externally-occurring events (e.g.,

the operator pushes a button), or internally triggered (e.g., a buffer condition reaches a

given state, a prior iteration of the task has completed). Moreover, regardless of how they

are triggered, tasks may have constant (or bounded) or variable (or unbounded) execution

times. The matrix of possibilities is shown in Figure 31.

Execution

Time

Trigger
Mechanism

Constant

(bounded)

Variable

(unbounded)

Periodic H, S S
Time

Sporadic H, S S

External H, S S
Event

Internal H, S S

H = Hard Real Time

S = Soft or Non-Real Time

Figure 31. Task Taxonomy

5.6.1. Periodic Hard Real-Time Tasks

Time-triggered periodic hard real-tirne tasks are specified by the ordered pair <period, off-

set>. Task period can be an arbitrary number of minor frames. Obviously, the execution

time of the task must be less than its period. A task can be scheduled to start at an arbitrary

start frame offset, as measured from a given baseline frame. Periodic hard real-time tasks

are scheduled according to rate monotonic theory. This model should be compared to

AFTA Ada RTS rate group scheduling model described in Section 4 of this document

Page 91



Figure 32showsthreesuchtasks.Task 1 starts on frame 0 and has a period of 1 frame,

Task 2 starts on frame 1 with period 2, and Task 3 starts on frame 0 with period 5.

Task I

Task 2

Task

Figure 32. Scheduling of Hard Real-Time Periodic Tasks

5.6.2. Event-Triggered Hard Real-Time T_ks

An event-triggered hard real-time task is specified by the same parameters as periodic tasks,

except that the start frame offset now refers to how many frames after an event's occur-

rence the task must be started. Note that an explicit decision is required at system pro-

gramming time as to which task(s) event-triggered task(s) may preempt. Once enabled,

scheduling of an event-triggered hard real-time task is mechanized via its priority within

rate monotonic priority class corresponding to the period of the task.

Figure 33 shows event-triggered Task 4 which has a maximum execution time of 1 period,

and an offset of 0 after the frame in which the event occurs.

Page 92



Task 1

Task 3

Task 4

1
Event

Figure 33. Scheduling of Event-Triggered Hard Real-Time Tasks

5.6.3. Time- or Event-Triggered Soft Real-Time Tasks

Time- or event-triggered soft real-time tasks are specified by the maximum skew which can

build up between nonfaulty redundant copies of the task between "synchronization points."

Soft real-time tasks may be arbitrarily scheduled by the underlying operating system ac-

cording to a totally arbitrary (e.g., round-robin or self-suspension) policy, so long as they

may be preempted by hard real-time tasks. A synchronization point may be a request to per-

form source congruency on data, vote data, wait for a specified time interval, wait until a

given time, or other any other "synchronizing act" as needed by the application.

When the redundant copies of a soft real-time task arrive at a synchronization point, they

invoke the AFTA NE device driver which registers their request to perform the synchro-

nization act. This invocation blocks the caller until the synchronization act request has been

approved and executed by the AFTA NE device driver. At timer interrupts, the AFTA NE

device driver interrupt service routine (ISR) exchanges the synchronization act request pat-

terns of all soft real-time tasks and determines which may be approved and executed. A re-

dundant task's synchronization act is approved and executed by the ISR if all copies of the

task have requested the exchange, or a majority of tasks have requested the act and the

maximum task skew has expired. After the synchronization act has been executed by the

device driver, the caller is unblocked and may continue execution. Note that when the caller

is unblocked, the redundant copies of the caller are synchronized. Each task may have a

different skew, which it may change at any time using calls to the AFTA NE device driver.

Page 93



Figure 34 showssoft real-timeTask5, which occasionallyrequestssynchronizingacts

which axe approved on scheduling frame boundaries by the AFTA NE device driver. Note

the variation in task period and skew which this approach accommodates.

Aperiodic task termination / exchange request pattern
sampled, voted, and approved on scheduling frame
boundaries

Scheduling
Frames

Task 5, Copy A

Task 5, Copy B

Task 5, Copy C

skew

Figure 34. Scheduling of Aperiodic Tasks

5.7. Network Element Device Driver

A UNIX-compatible device driver interface was implemented under LynxOS to allow ap-

plications to interface with the Network Element. This device driver supports the UNIX in-

stall(), open(), write0, read(), ioctl0, close(), and uninstaU0 calls.

5.7.1. Device Driver Overations

The NE is opened and closed using standard open() and close() calls. Once the device has

been opened using the open0 call, interactions with the NE are accomplished using the

ioctl0 call. NE-related functions which can be performed using this call axe:

NE_ISYNC. This operation performs initial synchronization of the

Network Elements. It is only necessary to perform this operation once after

bootstrapping the AFTA. Repeated invocations of the NE_ISYNC function

have no effect.

TIMER_PERIOD. This operation sets the period (in microseconds) of the

timer-driven interrupt service routine (ISR) which exchanges the synchro-

Page 94



nizationact requestpatternof all tasks,performsunanimityand majority

plustimeoutcalculationon thesepatterns,performsall enabledexchanges,

andunblockstaskswhichareawaitingcompletionof a synchronizationact.

TIMER_SET. This operationenablesthe timer interrupt, which, every

TIMER_PERIODmicrosecondsthereafter,causestheNE devicedriverISR
to beexecuted.

TIMER_RESET.Thisoperationdisablesthetimer interrupt.

NE_EXCH_TIMELIMIT. This operationallowsthe applicationprogram-

merto settheamountof time thattheNE_EXCHANGEoperationwill wait

beforedeclaringa timeoutona tardyexchangerequestand,consequently,

enablingtheexchange.

NE_EXCHANGE. This operationrequestsa one-round(vote) or two-

round(sourcecongruency)exchangeof data.Theexchangeis performedby

the NE devicedriver ISR only if all of the copiesof the caller havere-

questedthe exchange,or a majority of the callershaverequestedthe ex-

changeand at leastNE_EXCH_TIMELIMIT microsecondshaveexpired.

Thecaller isblockeduntil theexchangehasbeencompleted.

AdditionalNE-relatedfunctions,suchaschangingtheConfigurationTableandperforming

inline exchangeswithout waiting for theISR,will beaddedto this driver asneededby up-

comingapplications.

5.7.2. Device Driver Installation

The Network Element memory map is defined in Volume 4 of the AFTA Conceptual

Study. For the LynxOS integration, the NE was located in standard VMEbus address space

at location 10000000 (hex). The device driver was installed using the following script prior

to execution of Dynapath.

drinstall -c NE_driver

mknod /dev/ne c 8 0

devinstall -c -d 9 NEinfo

Figure 35. AFTA NE Device Driver Installation Script

Page 95



5.8. Dynapath Demonstration Architecture

This section describes the architecture and operation of the Dynapath demonstration which

was hosted on the quadruply redundant environment described above.

Dynapath is an algorithm for generating a low-altitude helicopter trajectory through rugged

terrain. It uses digital map data, the current vehicle state (e.g., position, velocity), vehicle

dynamical constraints (e.g., maximum rate-of-bank), a set of waypoints over which the

vehicle must fly, desired trajectory constraints (e.g., setpoint altitude), and other informa-

tion to construct a trajectory which meets all these constraints and requirements. The gen-

erated trajectory is then presented to the pilot on a head-up-display (HUD) in a simple-to-

use "highway-in-the-sky" format, which the pilot may follow. The Dynapath functionality

is likely to be safety-critical, especially in low-visibility conditions.

Figure 36 shows the major components of the demonstration. At the left of the figure,

Dynapath resides on the quadruply redundant AFTA, along with LynxOS and the Network

interface software described elsewhere in this report. Dynapath communicates with vehicle

dynamical simulation software (Helsim) and the HUD symbology generation software

running on a Silicon Graphics (SG) workstation using Ethemet-based TCPflP. The out-of-

window view of the terrain, the Dynapath-generated highway-in-the-sky symbology, and

other HUD symbology are presented on a high-resolution graphics monitor connected to

the SG.

Periodically, Dynapath transmits a request for vehicle state from the helicopter simulation.

When it receives a state update from the simulation, Dynapath calculates a new commanded

trajectory segment and transmits the new trajectory segment description to the symbology

generation software. The "pilot" views the terrain and Dynapath symbology and provides

cyclic and collective commands to the helicopter simulation via a mouse and joystick as she

attempts to follow the commanded trajectory.

Page 96



fli_ii_ii]_iiii!iiiiiiiiii_i!_ili_iiiiiiiii_iiiiiiiiiiii_!iiil,i!i_

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiii!!i!iiiiii!iiiii iiiiiiiiiiiii

  iiiiiiiiiiiiiii iiiii iiiiiiiii iiiii!iiiiiiiii iiiii !iii iii!iiiiiiii!i iiiii ii  ii !i!iiiiii

i_ii;ii?"_ •.,._.._._:_._,_ • ,_ :iiiii_ ii_i_i!ii

iii[_ Dvnaoath ]iii:: i:i::::!:_I_l TF_AJ it- ._ ::i:!:i :i:2:i_::

il_!! Lynx O S!N!I_|):: ::i
:::::_!_i:._:::..':._:_._.y:_:_:x,x'::::;_,_'_i_/:::::::: ::::: ::::::

Video
Monitor

Out-of-Window
View

+

TF/TA

"Highway
in the Sky"
Symbology

Joystick_ ___

RS232

Ethernet

AFTA:
4 FCRs

1 MVME147 68030 Processor per FCR
AFTA Network Elements

AFTA NE Interface / Scheduling Software

Silicon Graphics Workstation

Figure 36. Architecture of Dynapath Demonstration

5.8.1. Dynapath Application Programmer Interface to NE

Dynapath is scheduled on the AFTA as an aperiodic soft real-time application task. The de-

tails of the scheduling are of no consequence. While four copies of Dynapath run on the re-

dundant AFTA, only one processor (say, processor A) is connected over Ethernet to the

SG. Therefore Dynapath must invoke NE exchange primitives on the following occasions:

1. Processor A polls its Ethernet input buffers and provides all channels

with consistent copies of the polling result.

2. Processor A reads its Ethemet input buffers and provides all channels

with consistent copies of the input data.

3. All processors have completed computation of a trajectory segment and

must vote the result before Processor A transmits it to the SG over Ethernet.

Dynapath uses the blocking "exch0" call to perform these operations. The exch0 call is

built on the AFTA NE device driver NE_EXCHANGE ioctl, which blocks Dynapath until

P_e97



all copiesof Dynapathhaverequestedtheexchange,or a majority of thecopieshavere-

questedtheexchangeandauser-definedtirneouthasexpired.At thispoint,theexchangeis

saidto be"enabled."The exchangecanbeeither arequestfor avote or arequestto dis-

tributesingle-sourcedata,suchasthatobtainedfrom thehelicoptersimulation,to all mem-

bersof theVirtual Group.Whentheexchangeis enabled,theAFTA NE devicedriver ISR

performstherequestedexchange,deliverstheexchangeddatainto thebufferby thecaller
of the ioctl, andunblocksthecaller.

The contentsof theexch0 call areshownin Figure37.Thecall is invokedby theapplica-

tion programmerwith four arguments.Thepointer"raw" pointsto thesourceof thedatato

beexchanged,"voted" pointsto thedestinationof thedatato beexchanged,"class" indi-

catestheclassof theexchange(i.e., single-sourceor voted),and"size" indicatesthesize

(in bytes) of the data to be exchanged. The current implementation of the
NE_EXCHANGEioctl clobbersthedatapointedto byraw.

Theexch0call storesthis dataintoa structurewhich is sharedbetweentheapplicationpro-

gram and the Network Element Device Driver, sets the exchange request flag
(dyna_exch.sync_flag),and waitson the successfulcompletionof the ioctl0, indicating

that theexchangehasbeencompleted.At this point, controlis returnedto theapplication
task whichcanaccesstheexchangeddata.

void exch(char *raw, char *voted, int

{
dyna_exch.raw_data = raw;

dyna_exch.voted_data = voted;

dyna_exch.class = class;

dyna_exch.size = size;

dyna_exch.sync_flag = TRUE;

/* block here until exchange

if( ioctl(NE_fd, NE EXCHANGE,

{
perror("NE_EXCHANGE');

exit(-2);

}

/* exchange complete */

class, int size)

complete */

&dyna_exch) < 0)

Figure 37. Listing of exch0 Procedure

_.$,2, Dynapath Code for Interfacing with NE Device Driver

This section contains the file "dutils.c" which contains definitions of Dynapath's interface

to the Network Element. The file also demonstrates how to open the NE device driver, vary

the exchange timeout for the Dynapath task, initially synchronize the NEs (which also sets

up the timer-based interrupt service routine which synchronously services the NE exchange

Page 98



requests)t,andclosetheNE. Theexch()call codeis repeatedhere,which in this casein-

cludescodewhich reducestheexchangetimeoutfor the Dynapathtask.TheNE-specific
callsareprintedin boldfaceandenclosedin boxes.

Note that Dynapathusestwo taskskewtimeouts. Initially thetimeout is large sincethe

multiple copiesof Dynapathbuildup a hugeskewastheycontendfor andreadtheway-

point file from thesinglecopyof thewaypointf'de,which is NFS-mountedon theLynxOS
server.However,afterthefile is readanditerativeexecutionof thetaskbegins,no further

file accessesareneededsoDynapathcantightenup theskew.Alsonotethatanapplication

taskcanmodulateits skewasit executesandentersandleavesskew-inducingphasessuch

asfile readsandwrites.Forexample,if Dynapathwereto enteraphasein whichit readsor

writesa largesharedfile or performsalengthyEthernettransmission,it couldtemporarily

increaseits maximumskewparameter.

t Thesefunctionswouldnormallynotbedoneby anapplicationtask.In thisdemonstration
theywereimplementedin Dynapathfor simplicity.

Page99



l#include "NErdriver.h"

#include <stdio.h>

#include <smem.h>

#include <sem.h>

#include <pthread.h>

#include <lock.h>

#include <file.h>

#include "playback.h"

/*
/*

/*
/*
/*
/*

NOTICE */

*/
This NASA computer program has been released soley for one of */

the purposes set forth in NASA Management Intruction 2210.2B */

and further dissemination of the program is prohibited. */

*/
char dmain[] = "@(#)dutils.c 1.4 12/31/91";

void *attach_map();

extern void dynapath();

int NE_fd;int waypointread,timeoutlowered;

main(int argc, char *argv[])

{

int *ptr;

int loadid;

char set[5];

int d[na status;

/* presence vector and generic "integer value" */

int pvect,ival;

int sbsock;

waypointread = FALSE;

timeoutlowered = FALSE;

/* This code opens the NE device driver */

if ( (NE_fd = open("/dev/NE", O_RDWR) ) < 0)

(

perror( "oPen NE ") ;

pthread_exit(-l);

)
printf("opened NE \n");

/* Set NE device driver timer interrupt period */

ival = 40000; /* 40ms period */

if (ioctl(NE_fd, TIMER_PERIOD, &ival) < 0)

(

perror("setting timer period");

exit(-l);

)
/* Reset the timer and disable timer interrupt */

if (ioctl(NE_fd, TIMER RESET) < 0)

(
perror("resettlng timer");

exit(-l);

)

/* Set up a 30 sec task tlmeout for high-skew execution */

ival = 30000000; /* 30 sec task timeout */

if (ioctl(NE fd, NE_EXCH_TIMELIMIT, &ival) < 0)

(
perror("setting exchange time limit");

exit(-l);

Page 100



)
I* This code causes all channels to wait for a

synchronous "go" command from the user interface. */

.ocksync();/**/

/* This code causes the NEs to become synchronized */

/* It also starts the timer and enables timer rupt */

if (ioctl(NE_fd, NE ISYNC, &pvect) < 0)

{

perror("isync");

exit(-l);

}

printf("ISYNC complete\n");

ETHinit();

/* Setup for Avrada */

ptr = (int *) init(argc, argv);

switch(argc) {

case 0:

pb.save_flag = 0;

pb.playback_flag = 0;

break;

case i:

pb.save_flag = atoi(argv[0]

pb.playback_flag = 0;

break;

case 2:

pb.save_flag = atoi(argv[0]

pb.playback_flag = atoi(argv[l]

break;

}

strcpy(pb.save_file_name,"pbd");

sprintf(set,"%d", pb.save_flag );

strcat(pb.save_file_narne,set);

strcat(pb.save_file_name,".dat');

strcpy(pb.playback_file_name,"pbd");

sprintf(set,"%d", pb.playback_flag );

strcat(pb.playback_file_name,set);

strcat(pb.playback_file_name,".dat");

dynapath(); /* Execute Dynapath */

printf("dynapath task terminated with status %d\n",dyna_status);

/* All done. Close the NE device driver. */

close(NE fd);

/* This is the body of the exch() routine as used in

Dynapath demonstration. */

void exch(char *raw, char *voted, int class, int size)

(

struct exch_struct dyna_exch;

Page 101



int ival;

dyna_exch.raw_data = raw;

dyna_exch.voted_data = voted;

dyna_exch.class = class;

dyna_exch.size = size;

dyna_exch.sync_flag = TRUE;

/* Perform the exchange */

if( ioctl(NE fd, NE_EXCHANGE,

(
perror("NE_EXCHANGE");

exit(-2);

)

/* Exchange done...redundant copies synchronized. */

/*

The current ioctl exchanges data in place,
from raw to raw.

The application expects the voted data to be in

Therefore must bcopy from raw to voted.

Note that raw is !clobbered! by the ioctl.

"/

bcopy (raw,voted, size);

¢* This code reduces the timeout if the

_oint file read has been completed. */

if (waypointread && !timeoutlowered)

(

)

)
)

&dyna_exch) < 0)

voted.

skew-inducing way-

ival = I00000; /* 100 milli-seconds task timeout */

if (ioctl(NE_fd, NE_EXCH_TIMELIMIT, &ival) < 0)

perror("setting exchange time limit");

exit(-1);

timeoutlowered = TRUE;

Figure 38. Dynapath's dutils.c NE Interface Code

5.8.3. Use of NE Interface by Dynapath's Ethernet Communications Procedures

This section illustrates the use of the NE exch0 primitive by Dynapath's Ethernet

Communications Procedures resident in the file "comm.c." Two uses of the exch0 primi-

tive are demonstrated. The first is in the routine "get_helsim_data," in which a single-

source exchange (CLASS2A) is used ftrst to exchange the status of the incoming Ethernet

buffer (i.e., whether data are present), and second, to exchange the actual data if present.

The second use of exch0 is in the "send_hud" routine, where the Dynapath output data em-

anating from the redundant Dynapath executions are voted prior to being sent to the SG

"workstation.

The NE-specific calls are printed in boldface and enclosed in boxes.

Page 102



/* Code to be linked with Andre's code on the VME in order to */

/* communicate with the Silicon Graphics machine displaying the HUD */

/* and the PC displaying the map. */

/* This module contains integer functions ETHinit, send_hud, */

/* send_map, get_data_rec, and ETHclose. */

#include "ethernet.h" /* file containing AVRADA's ethernet addresses

*/
#include "common.h"

#include "heldata.h"

[#include "ne_drvr.h"

#include <stdio.h>

#include <fcntl.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

char comm_c[] = "@(#)M% i.i i0/28/91";

/* Standard C I/O include file

/* File constants for opening TCP ports */

/* System Error numbers and constants */

*/

#define FALSE 0

#define ETH_PORT 1510

#define HEL_ETH 1500

/* L O C A L D A T A */

int send_sock = -I; /* The Send socket */

int recv_sock = -I; /* The Receive socket */

int hel sock = -I; /* receive socket for ethernet */

int size; /* Size of ethernet address structure */

static struct sockaddr_in src, /* The source address */

dst; /* The destination address */

static struct sockaddr_in hel; /* helsim address */

static unsigned long host_address; /* Network address of this ma-

chine * /

static unsigned long broadcast_address; /* Network broadcast ad-

dress */

/* ETHinit Initializes ethernet send end recieve ports. */

/* Returned Value: 0 if successful, -I if not */

int ETHinit ( )

{

int tcp_error, /* Error number for opening TCP port */

fd; /* Temporary file descriptor */

fd = socket (AF_INET, SOCK_DGRAM, 0) ;

tcp_error = errno;

close(fd) ;

if ( !tcp_error I Itcp_error==EACCES) {

return (tcp_init () ) ;

}
else {

return(-l) ;

}

}

*/

Page 103



/* Function to get data from helsim */

*/

int get_helsim_data(struct heldata *msg)

(
int rval=O;

static int r_msize = -I;

static int msize = -i;

static struct heldata r_msg;

int dcount = O;

do {
rval = recvfrom(hel sock, (char *) (&r_msg),sizeof(struct heldata),

O, (struct sockaddr *)&hel,&size);

if(rval > O)

(
dcount++;

r_msize = rval;

}
} while((rval>O)&&(ntohl(hel.sin_addr.s_addr)==host_address));

/* Exchange status and, conditionally, data for incoming

Ethernet socket used by Channel A */

exch(&r_mslze, &msize, CLASS2A, sizeof(r_msize));

if(msize > 0)

{
exch(&r_msg, msg, CLASS2A, sizeof(struct heldata));

)
if (dcount > O)

printf("got %d pkts\n",dcount);

return(msize);

}
int send_hud(struct dynapath_output *msg)

(
/* dst.sin_addr.s_addr = APOLLO; /* */

/* dst.sin_addr.s_addr = MAXWELL; /* */

dst.sin_addr.s addr = ONYX; /* */

/* Vote outgoing data before sending to helsim. */

exch(ms@,msg,CLASSl,sizeof(struct dynapath output));

return(sendto(send_sock,msg, sizeof(struct dynapath_output),0, (struct

sockaddr *)&dst,sizeof(dst)) );

}

/* ETHclose Close the socket descriptors. */

/* Returned Value: 0 */

ETHclose()

{
close(send_sock);

close(recv_sock);

send_sock = -i;

recv_sock = -i;

return(0);

)

/*< tcp_get_addrs Get the host and broadcast addresses >*/

/* *I

Page 104



/* host_addr 0 The address of this machine. */

/* */
/* Returned Value: 0 if successful; (-I) otherwise. */

int tcp_get_addrs( host_addr )

unsigned long *host_addr;

(

int s; /* Socket descriptor */

struct ifreq *ifp; /* Pointer to interface info */

**************************

/* Get the host address */

**************************

{

char host_name[32] ;

struct hostent *h;

if (gethostname( host_name, sizeof( host name ) ) < 0) (

perror "Getting host name" );

return -i );

)
if ( ! (h = gethostbyname ( host_name ) ) ) {

perror "Getting host by name" );

return -i );

)

*host_addr = ntohl( *(u_long *) h->h_addr );

}
return( 0 );

}

/* tcp_init Initialize a communication sockets. */

I* *I
/* Returned Value: 0 if the socket is created without error; */

/* -i otherwise. */

int tcp_init()

(
int

int

bsize;

opt; /* Value of socket options */

/* Check to see if initialization has already been done */

if ((send_sock != -i) JJ (recv_sock != -I))

return( 0 );

/* Determine host and broadcast addresses */

if (tcp_get_addrs( &host_address ) < 0)

return( -i ) ;

*WW*W*WW**WWWWW*WWWWWWWWWWW*WWWWWWWWWWWW*WWWW*WWWWWWWWWW*WWWWW*W***/

/* Open Send socket */

if ((send_sock = socket( AF_INET, SOCK_DGKAM, 0)) < 0) (

perror( "Opening Send socket" );

return( -I );

)
/*********WWW****WWWWW*WWWWWWW*W**W*WWWW**WWW*WWW*WW**WW***W*W_*W*W*/

/* Enable broadcasting on Send socket */

/WWWWWW**W*W*WW*WWWWWWW*WWWWWWWWWWWWWWW*W*WW*WWWWWWWWW*WW*WWW*WW*W**/

Page 105



#ifdef SO_BROADCAST

printf("SO_BROADCAST DEFINED\n");

opt = I;

if ( setsockopt( send_sock, SOL_SOCKET, SO_BROADCAST,

&opt, sizeof(opt) ) < 0 ) (

perror( "Setting Send socket options" );

return( -i );

}
#endif

*********************************************************************

/* Set up destination address to send to */

*********************************************************************

dst.sin_family = AF_INET;

dst.sin_addr.s_addr = htonl( broadcast_address );

dst.sin_port = HEL_ETH; /*ETH_PORT; */

/* Receive socket */

if ((recv_sock = socket( AF_INET, SOCK_DGRAM, 0 )) < 0) (

perror( "Opening Receive socket" );

return( -i );

)
if((hel_sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0)

{
perror("Opening helsim socket');

return(-l);

)
*********************************************************************

/* Identify Receive socket as non-blocking */

*********************************************************************

opt = i;

if (fcntl(recv_sock, F_SETFL,O_NDELAY)<0) (

perror( "Setting non-blocking Receive socket" );

exit( -i );

)
if(fcntl(hel_sock,F_SETFL, O_NDELAY) <0)

{
perror("Setting non-blocking on helsim socket");

exit(-l);

)

/* Set up source address to receive from */

src.sin_family = AF_INET;

src.sin_addr.s addr = htonl( INADDR_ANY );

src.sin_port = ETH_PORT;

/* Bind Receive socket */

bind( recv_sock, (struct sockaddr *) &src, sizeof( src ) );

hel.sin_family = AF_INET;

hel.sin_addr.s_addr = htonI(INADDR_ANY);

hel.sin_port = HEL_ETH;

Page 106



bind(hel_sock, (struct sockaddr

size = sizeof(struct sockaddr);

return (0);

*) &hel, sizeof(hel));

Figure 39. Use of NE Interface Calls by Dynapath Ethemet I/O Procedures

Page 107



6. References

[Ab188] Abler, T., A Network Element Based Fault Tolerant Processor, MS Thesis,

Massachusetts Institute of Technology, Cambridge, MA, May 1988.

[AMD89a] The SUPERNET Family for FDDI, Advanced Micro Devices Data Book,

Publication # 09734 Rev. C, February 1989.

[AMD89b] Am7968/Am7969-175 TAXIchipTM Integrated Circuits, Advanced Micro

Devices Data Sheet, Publication # 12834 Rev. A, November 1989.

[ANSI139] "Fiber Distributed Data Interface (FDDI) - Token Ring Media Access

Control (MAC)" American National Standard, ANSI X3.139-1987,

November 5, 1986.

[ANSI148] "Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer

Protocol (PHY)," American National Standard, ANSI X3.148-1988, June

30, 1988.

[ANSI166] "Fibre Data Distributed Interface (FDDI) - Token Ring Physical Layer

Medium Dependent (PMD)," American National Standard, ANSI X3.166-

1990, September 28, 1989.

[APS90] Acarlar, M. S., Plourde, J. K., Snodgrass, M. L., "A High Speed Surface-

Mount Optical Data Link for Military Applications," IEEE/AIAA/NASA 9th

Digital Avionics Systems Conference Proceedings, October 15-18, 1990, p.

297-302.

[Bab90a] Babikyan, C., "The Fault Tolerant Parallel Processor Operating System

Concepts and Performance Measurement Overview," Proceedings of the 9th

Digital Avionics Systems Conference, October 1990, pp. 366-371.

[Ber87] Bertsekas, D., Gallager, R., Data Networks, Prentice-Hall, 1987.

[Ber90] Berger, K. M., Abramson, M. R., Deutsch, O. L., "Far-Field Mission

Planning for Helicopters," CSDL Technical Report CSDL-R-2234, March

1990.

[Bev90] Bevier, W.R., and Young, W.D., "The Proof of Correctness of a Fault-

Tolerant Circuit Design," 2nd International Working Conference on

Dependable Computing for Critical Applications, Tucson, AZ, February

1991.

Page 108



[Bic90]

[Biv88]

[Bla91]

[Boo88]

[Bur89]

[But88]

[CAMP]

[Car84]

[Cha84]

[Che87]

[Coh87]

[Coh88]

Bickford, M., and Srivas, M., "Verifying an Interactive Consistency

Circuit: A Case Study in the Reuse of a Verification Technology," NASA

Formal Methods Workshop 1990, NASA Conference Publication 10052,

November 1990.

Bivens, G. A., "Reliability Assessment of Surface Mount Technology

(SMT)," RADC report RADC-TR-88-72, March 1988.

Black, Uyless, OSI : A Model For Computer Communications Standards,

Prentice-Hall, 1991.

Booth, F., "Advanced Apache Architecture," 8th Digital Avionics Systems

Conference, October 1988.

Burkhardt, L., Advanced Information Processing System: Local System

Services, NASA Contractor Report 181767, April 1989.

Butler, R. W., "A Survey of Provably Correct Fault Tolerant Clock

Synchronization Techniques," NASA TM-100553, NASA Langley

Research Center, February 1988.

CAMP-1 Final Technical Report AFATL-TR-85-93, 3 Volumes, Available

as DTIC AD-B 102 654, AD-B 102 655, and AD-B 102 656 from Defense

Technical Information Center, Alexandria, VA 22304-6145.

Carlow, G. D., "Architecture of the Space Shuttle Primary Avionics

Software System", Communications of the ACM, 27(9):926-36, September

1984.

Chambers, F. B., ed., Distributed Computing, Academic Press, 1984.

Cheng, S-C., Stankovic, J. A., Ramamritham, K., "Scheduling

Algorithms for Hard Real-Time Systems - A Brief Survey," in Hard Real-

Time Systems, IEEE Computer Society Press, 1988.

Cohn, Marc D., "The Conformance of the ANSI FDDI Standard to the

SAE-9B HART High Speed Data Bus Requirements for Real-Time Local

Area Networks," Society of Automotive Engineers Aerospace Systems

Conference Proceedings, November 1987.

Cohn, Marc D., "The Fiber Optic Data Distribution Network: A Network

for Next-Generation Avionics Systems," AIAA/IEEE 8th Digital Avionics

Systems Conference Proceedings, October 17-20, 1988, p. 731-737.

Page 109



[Coh90a]

[Coh90b]

[Cohn88]

[Com91]

[CSDL9214]

[CuUyer 88]

[CVC2]

[DACS]

[Da173]

[Deu88]

[DID80811]

[DiV90]

[DiV91]

Cohen, G. C., et. al., Design of an Integrated Airframe/Propulsion Control

System Architecture" NASA Contractor Report 182004, March 1990.

Cohen, G. C., et. al., Final Report: Design of an Integrated Air-

frame/Propulsion Control System Architecture, NASA Contractor Report

182007, March 1990.

Cohn, A., "Correctness Properties of the Viper Block Model: The Second

Level," Tech. Report 134, Univ. of Cmabridge, Cambridge, England, May

1988.

Comer, D. E., Intemetworking with TCP/IP, Prentice-Hall, 1991.

Completion of the Advanced Information Processing System, response to

NASA Langley Research Center, CBD Announcement REF SS017, issue

PSA-9214, November 12, 1986.

Cullyer, W. J., "Implementing Safety-Critical Systems: The VIPER

Microprocessor," VLSI Specification, Verification and Synthesis, Kluwer

Academic Publishers, 1988.

"System Specification for Combat Vehicle Command and Control

(DRAFT)," CVC2 Systems Implementation Working Group, 31 October

1990.

Defense & Analysis Center for Software, Kaman Sciences Corporation,

P.O. Box 120, Utica, NY 13503.

Daly, W.M., Hopkins, A.L., and McKenna, J.F., "A Fault-Tolerant Digital

Clocking System," 3rd International Symposium on Fault Tolerant

Computing, Palo Alto, CA, June 1973.

Deutsch, O. L., Desai, M., "Development and Demonstration of an On-

Board Mission Planner for Helicopters," CSDL Technical Report CSDL-R-

2056, April 1988.

"VHSIC Hardware Description Language (VHDL) Documentation," Data

Item Description, DD Form 1664, DI-EGDS-80811, May 11, 1989.

Di Vito, B. L., Butler, R. W., Caldwell, J. L., Formal Design and

Verification of a Reliable Computing Platform for Real-Time Control,

NASA Technical Memorandum 102716, October 1990.

Di Vito, B., Butler, R., and Caldwell, J., "High Level Design Proof of a

Reliable Computing Platform," 2nd International Working Conference on

Page 110



[Do182]

[Do184]

[Fel ]

[Fis82]

[Foh89]

[Gal90]

[Goe91]

[Gua90]

[Han89]

[Har87]

Dependable Computing for Critical Applications, Tucson, AZ, February

1991.

Dolev, D., "The Byzantine Generals Strike Again," Journal of Algorithms,

Vol. 3, 1982, pp. 14-30.

Dolev, D., Dwork, C., Stockmeyer, L., "On the Minimal Synchronism

Needed for Distributed Consensus," IBM Research Report RJ 4292

(46990), 5/8/84.

Felter, S. C., Douglas, P. H., Smith, C. A., "Avionics System Integration

for the MH-53J Helicopter," 9th Digital Avionics Systems Conference,

October 1990.

Fischer, M. J., Lynch, N. A., "A Lower Bound for the Time to Assure

Interactive Consistency," Information Processing Letters, Vol. 14, No. 4,

13 June 1982, pp. 183-186.

Fohler, G., Koza, C., "Heuristic Scheduling for Distributed Real-Time

Systems," Research Report No. 6/89, Institut fur Technische Informatik,

Technische Universitat Wien, Vienna, Austria, April 1989.

Galetti, R. R., Real-Time Digital Signatures and Authentication Protocols,

Master of Science thesis, Massachusetts Institute of Technology, May

1990.

Goel, A.L., and Sahoo, S.N., "Formal Specifications and Reliability: An

Experimental Study," 1991 International Symposium on Software

Reliability Engineering, Austin, Texas, May 1991.

Guaspari, D., Marceau, C., and Polak, W., "Formal Verification of Ada

Programs," IEEE Transactions on Software Engineering, Special Issue on

Formal Methods in Software Engineering, Vol. 16, No. 9, September

1990.

Hanaway, J. F., Morrehead, R. W., Space Shuttle Avionics System,

NASA SP-504, 1989.

Harper, R., Critical Issues in Ultra-Reliable Parallel Processing, PhD

Thesis, Massachusetts Institute of Technology, Cambridge, MA, June

1987.

Page 111



[Har88a]

[Har88b]

[Har91a]

[Har91b]

[Hir90]

[Hun86]

[Hwa84]

[IEEE1076]

[IEEE8021]

[IEEE8022]

[IEEE8023]

[IEEE8024]

[J88N2]

Harper, R., Lala, J., Deyst, J., "Fault Tolerant Parallel Processor

Overview," 18th International Symposium on Fault Tolerant Computing,

June 1988, pp. 252-257.

Harper, R., "Reliability Analysis of Parallel Processing Systems,"

Proceedings of the 8th Digital Avionics Systems Conference., October

1988, pp. 213-219.

Harper, R., Lala, J., Fault Tolerant Parallel Processor, J. Guidance,

Control, and Dynamics, V. 14, N. 3, May-June 1991, pp. 554-563.

Harper, R., Alger, L., Lala, J., "Advanced Information Processing System:

Design and Validation Knowledgebase," NASA Contractor Report 187544,

September 1991.

Hird, G.R., "Formal Methods in Software Engineering," 9th AIAA/IEEE

Digital Avionics Systems Conference, Virginia Beach, VA, October 1990,

pp. 230-234.

Hunt, W.A., "FM8501: A Verified Microprocessor," Proceedings of IFIP

Working Group 10.2 Workshop, North Holland, Amsterdam, 1986.

Hwang, K., Briggs, F., Computer Architecture and Parallel Processing,

McGraw-Hill, 1984.

"VHDL Language Reference Manual," IEEE Standard, IEEE Std 1076-

1987, March 31, 1988.

"Local and Metropolitan Area Networks: Overview and Architecture," IEEE

Standard, IEEE Std 802-1990, May 31, 1990.

"Logical Link Control," IEEE Standard, IEEE Std 802.2-1989, August 17,

1989.

"Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

Access Method and Physical Layer Specifications," IEEE Standard, IEEE

802.3-1988, June 9, 1988.

"Token-Passing Bus Access Method and Physical Layer Specifications,"

IEEE Standard, IEEE 802.4-1990.

"Linear Token Passing Multiplex Data Bus Protocol," Joint Integrated

Avionics Working Group Standard, Document J88-N2.

Page 112



[J8701]

[Klj89]

[Kop89]

[Kop91]

[Kri85]

[La184]

[La184]

[La185]

[La186a]

[La186b]

[La189]

[Lal91]

"Advanced Avionics Architecture (A3) Standard," Joint Integrated Avionics

Working Group Standard, Document J87-01.

Kljaich, J., Jr., Smith, B.T., and Wojcik, A.S., "Formal Verification of

Fault Tolerance Using Theorem-Proving Techniques," IEEE Transactions

on Computers, Vol. 38, No. 3, March 1989.

Kopetz, H., et. al., "Distributed Fault-Tolerant Real-Time Systems: The

MARS Approach," IEEE Micro, 9(1):25-40, February 1991.

Kopetz, H., et. al., "The Rolling Ball on MARS," Institut fur Technische

Informatik Research Report No. 13/91, Technische Universitat Wien,

Vienna, Austria, November 1991.

Krishna, C. M., Shin, K. G., Butler, R. W., "Ensuring Fault Tolerance of

Phase Locked Clocks," IEEE Trans. Computers, Vol. C-34, No. 8,

August, 1985.

Lala, J. H., "An Advanced Information Processing System," 6th AIAA-

IEEE Digital Avionics Systems Conference, Baltimore, MD, Dec. 1984.

Lala, J. H., "An Advanced Information Processing System," 6th AIAA-

IEEE Digital Avionics Systems Conference, Baltimore, MD, December

1984.

Lala, J. H., "Advanced Information Processing System: Fault Detection

and Error Handling," AIAA Guidance, Navigation and Control Conf.,

Snowmass, CO, Aug. 1985.

Lala, J.H., "Fault Detection, Isolation, and Reconfiguration in the Fault

Tolerant Multiprocessor," Journal of Guidance, Control, and Dynamics,

Sept-Oct. 1986.

Lala, J. H., "A Byzantine Resilient Fault Tolerant Computer for Nuclear

Power Plant Applications," 16th Annual International Symposium on Fault

Tolerant Computing Systems, Vienna, Austria, 1-4 July 1986.

Lala, J.H., et. al., "Study of a Unified Hardware and Software Fault

Tolerant Architecture," NASA Contractor Report 181759, January 1989.

Lala, J.H., R. Harper, K. Jaskowiak, G. Rosch, L. Alger, and A. Schor

"AIPS for Advanced Launch System: Architecture Synthesis Report",

NASA Contractor Report 187544, September 1991.

Page 113



[Lam85] Lamport,L., MeUiar-Smith,P.M., "SynchronizingClocksin thePresence

of Faults,"Journalof theACM, 32(1):52-78,January1985.

[Lap90] "Dependability:Basic ConceptsandTerminology," J.C.Laprie - Editor,

Publishedby InternationalFederationfor Information Processing(IFIP)

Working Group 10.4 on DependableComputing and Fault Tolerance,
December1990.

[Leh87] Lehoczky,Sha,Ding, TheRateMonotonicSchedulingAlgorithm - Exact

CharacterizationandAverageCaseBehavior,TechnicalReport,Department

of Statistics,Carnegie-MellonUniversity,1987.

[Leh89] T. Lehr, et. al., "VisualizingPerformanceDebugging",Computer, October

1989, pp. 38-51.

[Liu73] Liu, C. L., Layland, J. W., "Scheduling Algorithms for Multiprograming

in a hard Real-time Environment," J. ACM, 20(1):46-61, 1973.

[LSP82] Lamport, L., Shostak, R., Pease, M., "The Byzantine Generals Problem,"

ACM Transactions on Programming Languages and Systems, Vol. 4, No.

3, July 1982, p. 382-401.

[MA-HDBK] Modular Avionics Handbook, Document No. 21530(0-6), FSCM 51993,

Draft C, U. S. Air Force ASD-ALD/AX, 19 April 1990.

[Ma78] Martin, D. L., Gangsaas, D., "Testing of the YC-14 Flight Control System

Software," AIAA Journal of Guidance, Control, and Dynamics, Vol. 1,

No. 4, July-August 1978.

[McE88] McElvany, M. C., "Guaranteeing Deadlines in MAFT," IEEE Real-Time

Systems Symposium, Huntsville, AL, December 1988.

[MIL-HDBK-0036] "Survivable Adaptable Fiber Optic Embedded Network II -

SAFENET II," Military Handbook, MIL-HDBK-0036, 1 March, 1990.

[MIL-HDBK-59] MIL-HDBK-59, "Computer-Aided Acquisition and Logistic Sup-

port (CALS) Program Implementation Guide," 20 December 1988.

[MIL-HDBK-217E] MIL-HDBK-217E, "Reliability Prediction of Electronic Equip-

ment," 2 January 1990.

[MIL-STD-344] MIL-STD-344 (draft), "Standard Army Vetronics Architecture," 14

September, 1990.

Page 114



[MIL-STD-785B] MIL-STD-785B, "Reliability Programfor SystemsandEquipment

DevelopmentandProduction,"15September1980.

[MIL-STD-1553] "AircraftInternalTimeDivisionCommand/ResponseMultiplex Data

Bus," Military Standard,MIL-STD-1553B, 12February,1980.

[MIL-STD-1815A] MIL-STD-1815A, "ReferenceManual for the Ada Programming

Language,"17February1983.

[Osd88] Osder, S. S., "Digital Fly-by-Wire System for Advanced AH-64

Helicopters,"8thDigital AvionicsSystemsConference,October1988.

[Pal85] D. Palumboand R. Butler, "Measurementof SIFT Overhead", NASA

TechnicalMemorandum86722,LangleyResearchCenter,Hampton,VA,
April 1985.

Pease,M., Shostak, R., Lamport, L., "Reaching Agreement in the
Presenceof Faults,"Journalof theACM, Vol. 27, No. 2, April 1980,pp.
228-234.

XTP® Protocol Definition, Revision3.5, Publishedby Protocol Engines
Inc., September1990.

Pekelsma,N. J., "Optimal Guidancewith ObstacleAvoidancefor Nap-of-

theEarthFlight," NASA ContractorReport177515,December1988.

Puschner,P., Koza, C., "Calculating the Maximum Execution Time of

Real-TimePrograms,"Real-TimeSystems,1(2):159-176,September1989.

PMV 68 CPU-3A Specification,Issue3, PublicationNo. 681/SA/04085,
RadstoneTechnologyplc, 1990.

Rushby,J.,vonHenke,F., "FormalVerificationof a FaultTolerantClock

SynchronizationAlgorithm," NASA ContractorReport4239,June1989.

SAE/AS-2A SubcommitteeRTMT StatementonRequirementsfor Real-

Time Communication Protocols (RTCP), Issue #1, SAE ARD50007,

August2 1991.

STAR MVP Technical Description,DocumentNo. 4069718,Lockheed
Sanders,25June1990.

Schutz,W., "On theTestabilityof DistributedReal-TimeSystems,"Proc.

TenthSymposiumonReliableDistributedSystems,Pisa,Italy, September,
1991.

[Pe80]

[PEI90120]

[Pek88]

[Pus89]

[Rad90]

[Rus89]

[SAE91]

[San90]

[Sch91]

Page115



[Spi89] Spivey, J.M., The Z Notation, A ReferenceManual, Prentice Hall
International(UK) Ltd, 1989.

[Spi90] Spivey, J.M., "Specifyinga Real-TimeKernel," IEEE Software,Special
IssueonFormalMethods,Vol. 7, No. 5, Sep1990.

[Sri90] Srivas, M. and Bickford, M., "Formal Verification of a Pipelined Mi-

croprocessor,"IEEE Software,SpecialIssueon FormalMethods,Vol. 7,

No. 5, September1990.

[Sta87] Stankovic,J. A., Ramamritham,K., "The Designof the Spring Kernel,"

Proc.of theRealTime SystemsSymposium,December1987.

[Sun74] Sundstrom,R. J., "On-Line Diagnosis of Sequential Systems," PhD

Thesis,Universityof Michigan,1974.

[Tan88] Tanenbaum,A. S., ComputerNetworks, secondedition, Prentice-Hall,
1988.

[X3T95] "FDDI StationManagement(SMT),"PreliminaryDraft ProposedAmerican

NationalStandard,X3T9.5/84-49,Rev.6.2, May 18, 1990.

XpressTransferProtocol®,XTP®, andProtocolEngine® are registeredtrademarksof
ProtocolEngines,Incorporated.

Page116



7. Glossary of Terms and Acronyms

AFTA-Army Fault-Tolerant Architecture-A computer designed for both high reliability and

high throughput. The AFTA is based on the FTPP architecture.

aperiodic tasks-A set of tasks whose iteration rates are unknown or undefined.

ASIC-Application Specific Integrated Circuit-A type of integrated circuit that can be custom

designed by the hardware engineer so that it will perform a particular logic or processing

function and at the same time save circuit board space and power consumption. The advent

of VLSI design techniques has made ASICs a more flexible and practical option for hard-

ware designers.

ATP-Authentication Protocol-A protocol utilized by the BRNP to sign outgoing packets

and to test the authenticity of incoming packets.

ATPG-A_t0matic Test Pattern Oencrati0n-The generation of test vectors directly from a

neflist for verification of device functionality. Test vectors from an ATPG program do not

test the correct functionality of the device; they only test that the device is a correct imple-

mentation of the design as specified by the netlist.

behavioral VHDL is defined to be a VHDL architecture which uses any of the legal VHDL

constructs, including those which do not correspond to possible hardware realizations of

the description (i.e., pure behavioral may not be synthesizeable). A level of description

that specifies a device functionally in terms of output reactions to input stimulus. A behav-

ioral description can also specify the timing relationships of inputs to outputs.

BIT-Built In Test-This is an internal diagnostic testing system that is included as part of the

AFTA design. There are three forms of the BIT-- I-BIT is the initial power-on test system,

M-BIT is for maintenance testing, C-BIT is the continuous in-flight test system.

BRNP-Byzantine Resilient Network Protocol-A network layer protocol which implements

the Byzantine Resilient Virtual Circuit in order to guarantee that all messages are delivered

accurately.

broadcast addressing-A method of station addressing using an identifier that causes all sta-

tions to respond to the specified address.

b__pass-The ability to effectively isolate a node from the network without disrupting the

continuity of the network.

Byzantine Resilient-Capable of tolerating Byzantine faults. A Byzantine Resilient system is

capable of handling arbitrarily malfunctioning components that may supply faulty informa-

Page 117



tion to otherpartsof thesystemtherebycausingaspreadof faulty informationwithin the

system.

C3-Cluster3-An FTPPmodelnumber.Composedof either4 or 5 FCRs,3-40processors,

1-40VIDs, simplex,triplex, andquadruplexprocessorredundancylevels.PreviousP'TPP

models were C1 (4 FCRs, 16 processors, 4-16 VIDs, simplex, duplex, triplex, and

quadruplex processor redundancy levels) and C2 (4 FCRs, 4 processors, one fixed quad

VID).

cache-A form of memory that is typically much faster and much smaller than main memory.

Through utilization of cache memory, a processor's throughput will be increased. Typi-

cally cache memory acts as a staging area for data; information will be pulled from main

memory and temporarily stored in cache while it undergoes processing.

CDU-Cockpit Display Unit-A cathode ray tube display located in the vehicle cockpit for

display of system status. The CDU may display overall AFTA system status, LRU level

status, or LRM level status.

CID-Communication Identification-A designation assigned to each task which is used for

intertask communication.

class test-A test of the Network Element voting mechanism that requests a non-congruent

message exchange selectively on each channel of a fault masking group.

cluster-An FTPP consisting of 4 or 5 FCRs containing at least one virtual processing site.

Multiple clusters could be connected by a network device (such as a fault-tolerant data bus)

to provide even greater throughput than a single cluster. Most references to an FTPP refer

to a single duster design.

CMF-Common Mode Fault-A type of malfunction which will cause multiple faults or

complete execution failure within a redundant processing group. Common mode faults

may result from software flaws, hardware bugs, design flaws, massive electrical upsets

etc.

concurrent I/O-Input/Output processes that allow the associated virtual group to perform

other tasks while I/O is collecting data. This allows for greater processor throughput.

CRC-Cyclic Redundancy Check-An error detecting code used in data communications that

allows the unit receiving a message to ensure through binary mathematics that it is the same

message sent by the transmitting unit.

CSMA/CD-Carrier Sense Multiple Access with Collision Detection-A form of media access

control whereby a potential transmitting station will monitor the bus to ensure that it is clear

Page 118



before transmissionbegins. During transmission,the stationalso monitorsthe bus to

checkfor messagecollisions. If acollisionoccurs,themessagemustbere-transmitted.

CT-ConfigurationTable-A tablestoredon theNetwork Elementthatcontainsthecurrent

configurationof thesystem,i.e. whichprocessorsaremembersof whichvirtual groups.

DAIS-Digital Avionics Instruction Set-A benchmark for measuring processor throughput.

depot test-A set of diagnostic level tests executed outside of the constraints of a real-time

environment with emphasis on the isolation of chip level faults in these components. These

tests would occur at a maintenance repair facility in contrast to the various forms of built-in

testing.

DPRAM-Dual-Port Random Access Memory-The type of memory that occupies the data

segment. It provides a buffer between the NE and the PE; both the NE and the PE may ac-

cess the data segment asynchronously, provided that they do not attempt to access the same

location.

DR-Discrepancy Report-A report that is filed whenever unexpected behavior of the hard-

ware, software, or system is encountered. By recording observable symptoms of the sys-

tem throughout testing, integration, verification and validation, one may better trace and

identify system flaws.

_-A specific instance of a protocol element in an Open Systems Interconnection layer or

sublayer.

FCR-Fault Containment Region-Usually comprised of a number of line replaceable mod-

ules such as Processing Elements, Network Elements, input/output controller, and power

conditioners. The AFTA is made up of four or five FCR's, and each FCR usually resides

on a single circuit board (with the exception of the power conditioner). An interchangeable

term for the FCR is Line Replaceable Unit or LRU.

FDDI-Fiber Distributed Data Interface-A networking standard developed by the American

National Standards Institute to provide high bandwidth for Local Area Networks.

FDIR-Fault Detection, Identification and Recovery-FDIR software designed for the AFTA

allows it to sustain multiple successive faults by identifying a faultycomponent and recon-

figuring the AFTA system operation to compensate for the fault.

FIFO-First In First Out-A type of information buffer in which the data that is stored first

chronologically will be the fn'st to be extracted.

FMEA-Failure Modes and Effect_ Analysis

Page 119



FMG-Fault Masking Group-A logical grouping of three or four processors to enhance the

reliability of critical tasks. The members of an FMG execute the same code with the same

data and periodically exchange messages to ensure that they produce the same outputs.

FTC._.-Fault Tolerant Clock-A distributed digital phase-locked loop used for synchronization

of AFTA fault containment regions.

FTD____.BB-FaultTolerant Data Bus-A local area network designed around principles of Byzan-

tine resilience. Its primary objective is to provide an optimal internetworking system be-

tween simplex and redundant processing sites.

FTNP-Fault Tolerant Navigation Processor-The initial ground vehicle application for the

AFTA is for the navigations system in Armored Systems Modernization vehicles.

FTPP-Fault-Tolerant Parallel Processor-A computer designed for both high reliability and

high throughput. The core of the FTPP is the Network Element.

functional reliabili _ty-The probability that a given function can be executed because its re-

sources are operational.

functional synchronization-In maintaining synchronous operation, the members of a VID

perform a synchronizing act after some sequence of functions has been completed. The se-

quence of functions between the synchronization points is referred to as a frame.

G._C-Global ControUer-A microcoded f'mite-state machine used to coordinate the functions

throughout the Network Element.

graceful degradation-Through self-testing, a virtual group may identify a faulty member

and gracefully degrade its redundancy level using a configuration table update message to

eliminate the faulty channel.

IOC-Input/Output Controller-These devices connect the AFTA to the outside world, and

they must be compatible with the bus connecting elements of the FCR. They may have a

programmable processor on board to drive the I/O, or they may require off-board proces-

sors for operation.

IPS-Instructions Per Second-The number of machine language instructions that a processor

will execute every second. This measurement is used to reference the speed of the proces-

sor.

ISO/OSI-Intemational Standards Organization/Open Systems Interconnection-A specifica-

tion and model for computer communication networks.

Page 120



LAN-L0cal Ar¢a Network-A network topology that interconnects computer systems sepa-

rated by relatively short distances (2-2000 meters). LAN technology is usually based on a

shared medium with no intermediate switching nodes required.

leaf-level-(VHDL) The models at the bottom of the model tree. Leaf-level models in VHDL

are always pure behavioral models.

LERP-Local Exchange Request Pattem-A siring of bytes describing the current state of the

input and output buffers for each processor in an FCR. The LERP is used to generate the

SERP. Each FCR has a different configuration, therefore the LERPs for each FCR will be

different. For this reason, LERPs must be treated as single-source data.

link-An element in a physical network that provides interconnection between nodes.

LOC-Loss of Control-This will occur as a result of a failure in any flight critical portion of

the Flight Control System. For analysis purposes, LOC will be considered as a total loss

of the vehicle.

Local FDI-Each virtual group will exercise its own fault detection and identification pro-

cesses to monitor failures among its processors. Also, each virtual group may initiate its

own recovery options.

logical addrescng-A method of station addressing using an identifier that may select a

group of stations to respond to the specified address.

LRM-Line Replaceable Module-The physical unit for field diagnosis and repair. Typically

it consists of one circuit card assembly with one or more Processing Elements.

LTPB-Linear Token Passing Bus-A media access control method whereby stations pass a

token along a virtual ring from one to another. A station may only transmit when it pos-

sesses the token.

MDC-Minimum Dispatch Complement-This specifies the absolute minimum level of oper-

ability for the Ak-q'A system to be cleared for a sortie.

media access control-The method by which access to the physical network media is limited

to a single node so that communications over the media are undisturbed.

media layer-One or more physical layer media. Multiple media layers are physically and

electrically isolated from each other to the same degree as a fault-containment region in a

fault-tolerant computer. Most traditional LANs use only a single network layer. A Byzan-

tine resilient network usually employs multiple media layers for redundancy.

memory alignmcnt-A process whereby the RAM and registers in each processor of a virtual

group are made congruent as part of the resynchronization of a virtual group.

Page 121



mission reliability-Arithmetically speaking, mission reliability is one minus the probability

that failure of the AFTA causes abortion of the mission.

MMC-Minimum Mission Complement-This specifies the minimum level of AFTA oper-

ability for the vehicle to continue its mission.

NDI-Non-Developmental Item

NE--Network Element-The hardware device which provides the connectivity between vir-

tual groups. The primary function of the NE is to exchange and vote packets of data pro-

vided by the processors. The ensemble of Network Elements forms a virtual bus network

to which all virtual groups are connected.

NED-Network Element D-The name by which a Network Element is known in the physi-

cal AFTA configuration. An NEID refers to a specific Network Element in the system, i.e.

the same NEID on different FCRs refers to the same Network Element. The NEID is also

used to refer to the FCR in which the referenced Network Element resides. By convention,

letters are used to denote the NEID.

neflist-A list defining interconnections of components. Netlists are typically used for de-

signing printed circuit boards or ASICs.

NIU-Network Interface Unit-The connection between a station and the FTDB

node-An element in a physical network that provides the necessary interface between a sta-

tion and the network media.

nonpreemptible I/O dispatcher-A task on the virtual group that manages the execution of

certain I/O insmactions that cannot be interrupted.

packet-A block of data consisting of a header, data, and a trailer exchanged between peer

protocol entities. The term packet is somewhat generic and is applied at all levels of the

protocol hierarchy.

packet-A string of data of fixed or variable length for transmission from one processor to

another through an inter-processor network. A message-passing network handles data in

packets. The term packet is used here to refer to a fixed-size (64 bytes) block of data which

is transmitted by the Network Elements.

PDU-Protocol Data Unit-A fancy name for a packet. PDU is the name used by OSI.

PE-Processing Element-A hardware device which provides a general or special purpose

processing site. A minimal PE configuration contains a single processor and local memory

(RAM and ROM). PEs may optionally have private I/O, making them a combination PE

and IOC.

Page 122



PEID-Processin_Element ID-The name by which a Processing Element is known in the

physical AFTA configuration. Each PE in an FCR has a unique PEID. However, the same

PEID may be used by another processor in another FCR. A combination of NEID and

PEID is used to uniquely identify a single Processing Element within a cluster.

physical addressing-A method of station addressing using a unique identifier such that at

most one station responds to the specified address.

PIMA-Portable Intelligent Maintenance Aid-A system resembling a laptop computer which

will initiate the maintenance built in testing (M-BIT), interrogate AFTA for fault informa-

tion logged during a mission, and extract maintenance records for system components.

PMD-Physical layer Medium Dependent-The standard which defines the physical medium

that is used for the data communications channel on a network.

presence test-The polling of various components to determine if each is active and syn-

chronized. The testing may be performed on members of virtual groups or on the virtual

groups themselves.

primitiv_-A function or procedure that one entity provides to another. The primitive defini-

tion specifies the inputs, outputs, and data formats for the primitive.

PROM-programmable Read Only Mem0ry-A form of computer memory that will store a

permanent copy of one or more subroutines specifically intended for use by a particular mi-

croprocessor. PROM's allow for a certain level of hard-wired software control over the

processor.

quadruplex-A virtual group consisting of four processing sites.

rate group dispatcher-An RG4 task that is responsible for controlling the execution of the

rate group tasks and providing reliable communication between the rate group tasks

throughout the system.

Register Transfer Level (RTL) VHDL-A behavioral format which specifies the functionality

of a block from the standpoint of random combinational logic and/or synchronous regis-

ters. For the purpose of the AFTA NE development, RTL is defined to be synthesizeable

behavioral VHDL, that is, a behavioral VHDL description that is suitable for input to a

synthesis tool.

reprocurement-The act of obtaining new parts to replace parts in an existing system, or to

build additional copies of an existing design.

RG-Rate Group-A set of tasks whose iteration rate is well-defined and whose execution

times do not exceed the iteration frame (the inverse of the iteration rate).

Page 123



R/SC-Reduced Instruction Set Com_Duter-A type of microprocessor which utilizes a limited

set of machine language instructions to allow for more rapid execution of those instructions

and thus greater throughput for the computer.

RTS-Run Time System

SAVA-Standard Army Vetronics Architecture

sequential I/O-Input/Output processes that require the managing virtual group to completely

supervise the activity. In other words, the virtual group must block itself until the I/O is

finished.

SERP-System Exchange Request Pattern-A string of bytes describing the current state of

the input and output buffers for each processor in the system. The SERP is used to deter-

mine if packets can be sent from one virtual group to another. The LERP from each FCR is

exchanged using a source congruency to generate the SERP. Because the SERP originates

from a source congruency exchange, it can be considered congruent throughout all func-

tioning FCRs.

SIFT-Software Implemented Fault T01erance-System fault tolerance functions achieved

primarily through operating system programming rather than primarily through dedicated

hardware.

simplex-A virtual group consisting of only one processing site.

single-source data-An element of information which originates from a single point. Exam-

ples of single-source data include sensor readings, input values, and syndromes. Single-

source data must be distributed to fault-masking groups using a source congruency ex-

change to maintain Byzantine resilience.

sortie availability-One minus the probability that the vehicle is preven.ted by the AFTA from

beginning a mission at the desired time.

source congruency-A type of exchange used to distribute data from a single source, such as

an input device, to members of a fault-masking group. The source congruency, which is

also known as a class 2, 2-round exchange, or interactive consistency, is a primary re-

quirement for a Byzantine resilient system.

station-A device connected to a network that can transmit or receive data over the network.

Often a station is a processing site. In the FTDB, a station can be a redundant processing

site.

Page 124



structural VHDL-A level of description that specifies a VHDL architecture by defining in-

terconnections of instantiations of VHDL entities. A structural description resembles a

conventional netlist.

syndrome-A bit field indicating the observance of unusual behavior somewhere in the sys-

tem. Syndromes can be used in an attempt to diagnose and repair faults in the system.

System FDI- A process that will coordinate system status and fault information as well as

testing and analyzing shared components.

task migration-The movement of a necessary task from a failed processor to another pro-

cessor within the same fault containment region.

test bench-A model of a test fixture that is used to test a device being designed with VHDL.

The test bench is written in VHDL and provides a non-proprietary way of stimulating and

monitoring a design in a simulator.

testability-The ability to unambiguously ascertain the functionality of each Line Replaceable

Module of the AFTA.

TF/TA/NOE-Terrain Following/Terrain Av0idance/Nap of the Earth-A typical helicopter

mission application for which the AFTA will be designed.

THT-Token Holding Timer-A method used with token passing media access protocols to

limit the amount of time each station can transmit on the network.

timeout-A value of time used to monitor skew between processors of an FMG. All proces-

sors in an FMG should be synchronized to within one timeout value, so if a processor does

not respond within the tirneout period, that processor is considered faulty, and the other

processors will continue uninhibited. Timeouts are necessary on the AFTA to prevent

faulty processors from halting the system.

timestamp-A 32-bit quantity that indicates the relative time within the cluster. The Network

Element places a timestamp in the input info block for each packet successfully delivered to

a virtual group.

TNR-Transient NE Recovery-The procedure by which a Network Element which has suf-

fered a transient fault is reintegrated into the cluster. The first part of TNR is similar to the

ISYNC procedure. TNR also specifies the realignment of the Network Element state.

transient recovery_ policy-A recovery option whereby the faulty component is immediately

disabled and an attempt is made to reintegrate the component into the system.

m___p.k_.-Avirtual group consisting of three processing sites.

Page 125



validation-The process of demonstrating that an implemented system correctly performs its

intended functions under all reasonably anticipated operational scenarios.

validity-In a Byzantine resilient system, a condition in which all functioning members of a

fault-masking group are guaranteed to possess correct data. The validity condition also

implies the agreement condition.

vehicle reliability-One minus the probability that the vehicle is iost due to failure of the

AFTA.

VG-virtual group-A grouping of one or more processors to form a virtual (possibly redun-

dant) single processing site. All processors in a virtual group execute the same instruction

stream. If a virtual group has more than one member, those members must reside in differ-

ent FCRs. Virtual groups of 3 or more members are known as fault-masking groups.

VHDL-VHSIC Hardware Description Language-A language for specifying hardware de-

sign. VHDL designs can be expressed in a behavioral or a structural method. VHDL also

defines a simulation environment and incorporates an intrinsic sense of time.

VHSIC-Very High Speed Integrated Circuit-A Government-funded project to develop

technologies to be applied to new, high speed integrated circuits. The VHSIC Hardware

Description Language (VHDL) was developed under the VHSIC program.

VID-Virtual Identifier-The name by which a virtual group is known to the system. Also,

sometimes used as a synonym for virtual group.

voted messa_,e-A message sent by all members of a redundant processing group. This

message type is only used when exact consensus among all redundant members is ex-

pected. This is also known as a Class 1 message.

voter test-A test of the Network Element voting mechanism that seeds non-congruent val-

ues selectively on each channel of a fault masking group.

WAN-Wide Area Network-A network topology that interconnects computer systems sepa-

rated by long distances. WAN systems usually use packet switched technology.

watchdog timer-A simple timekeeper that will monitor operations in both the Processing El-

ements and the Network Elements to keep the hardware and software from wandering into

undesirable states.

working m'oup-The set of FCRs in a cluster which are synchronized and in the operational

phase. An FCR which suffers a fault drops out of the working group. The working group

may attempt to reintegrate the failed FCR into the working group.

WPV-Weight Power Volume-These are physical characteristics used to describe the AFTA.

Page 126



Form Approved
REPORT DOCUMENTATION PAGE OM8 No. 0;04-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathenng and maintaining the data needed, and completing and reviewing the collection of information, Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reduc ng this burden, to Washington Headquarters Services, Directorate for Information Operatio_ns end Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 222024302. and to the Office of Management and Budget, Paperwork Reduction Project {0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Contractor ReportJune 1994

4. TITLE AND SUBTITLE

Advanced Information Processing System: The Army Fault-Tolerant
Architecture Detailed Design Overview

6. AUTHOR(S)

Richard E. Harper, Carol A. Babikyan, Bryan P. Butler, Robed J. Clasen,
Chris Ho Harris, Jaynarayan H. Lala, Thomas K. Masotto, Gall A. Nagle,
Mark JoPrizant, and Steven TreadweU

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

The Charles Stark Draper Laboratory, Inc.

Cambridge, MA 02139

9. SPONSORINGI MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23681-0001

5. FUNDING NUMBERS

C NASI-18565

WU 505-64-52-53

8. PERFORMING ORGANIZATION

REPORT NUMBER

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-194924

11. SUPPLEMENTARYNOTES

Langley Technical Monitor: Carl R. Elks
Final Report

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 62

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Army Avionics Research and Development Activity (AVRADA) is pursuingprograms that would enable effective and
efficient management of large amounts of situational data that occurs during tactical rotorcraft missions. The "Computer
Aided Low Altitude Night Helicopter Flight Program" has identified automated Terrain Following/Terrain Avoidance, Nap of
the Earth (TF/TA, NOE) operation as key enabling technology for advanced tactical rotor craft to enhance mission
survivabilityand mission effectiveness. The processing of critical informationat low altitudes with short reaction times is
life-criticaland mission critical necessitating an ultra-reliable/high throughput computing platform for dependable service for
flight control, fusion of sensor data, route planning, near-field/far-field navigation, and obstacle avoidance operations.

To address these needs the Army Fault Tolerant Architecture (AFTA) is being designed and developed. This computer
system is based upon the Fault Tolerant Parallel Processor (FTPP) developed by Charles Stark Draper Labs (CSDL). AFTA
is hard real-time, Byzantine, fault-tolerant parallel processor which is programmed in the ADA language.

This document describes the results of the Detailed Design (Phase II and III of a 3-year project) of the AFTA development.
This document contains detailed descriptions of the program objectives, the TF/TA NOE application requirements,
Architecture. hardware desian, ooeratina svstems desian, svstems oerformance measurements, and analytical model_,,

14. SUBJECT TERMS 15. NUMBER OF PAGES

Fault-tolerant, real-time digital computer, Terrain Following/Terrain avoidance 126

operation le. PRICECODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102








